Uniqueness of Normal Proofs in Implicational Intuitionistic Logic

作者: Takahito Aoto

DOI: 10.1023/A:1008254111992

关键词:

摘要: A minimal theorem in a logic L is an L-theorem which not non-trivial substitution instance of another L-theorem. Komori (1987) raised the question whether every implicational intuitionistic has unique normal proof natural deduction system NJ. The answer been known to be partially positive and generally negative. It shown here that β-normal NJ whenever provable without non-prime contraction. contraction rule implication introduction whose cancelled assumption differs from propositional variable appears more than once proof. Our result improves partial solutions Komori‘s problem. Also, we present simple example does have βη-normal

参考文章(15)
Hiroakira Ono, Structural Rules and a Logical Hierarchy Springer, Boston, MA. pp. 95- 104 ,(1990) , 10.1007/978-1-4613-0609-2_8
等人 青戸, Unique normal proof property for implicational minimal formulas in the intuitionistic logic The annual research report. ,vol. 95, pp. 1- 33 ,(1995)
J. L. Krivine, Introduction to combinators and l-calculus Journal of Symbolic Logic. ,vol. 53, pp. 985- 986 ,(1986) , 10.2307/2274588
Dirk van Dalen, Logic and structure ,(1980)
Makoto Tatsuta, Uniqueness of Normal Proofs of Minimal Formulas Journal of Symbolic Logic. ,vol. 58, pp. 789- 799 ,(1993) , 10.2307/2275097
Sachio Hirokawa, Principal types of BCK-lambda-terms Theoretical Computer Science. ,vol. 107, pp. 253- 276 ,(1993) , 10.1016/0304-3975(93)90171-O
Yuichi Komori, Sachio Hirokawa, The Number of Proofs for a BCK-Formula Journal of Symbolic Logic. ,vol. 58, pp. 626- 628 ,(1993) , 10.2307/2275222
Gerhard Gentzen, Untersuchungen über das logische Schließen II Mathematische Zeitschrift. ,vol. 39, pp. 176- 210 ,(1935) , 10.1007/BF01201353