Transfer Learning Based on A+ for Image Super-Resolution

作者: Mei Su , Sheng-hua Zhong , Jian-min Jiang

DOI: 10.1007/978-3-319-47650-6_26

关键词:

摘要: Example learning-based super-resolution (SR) methods are effective to generate a high-resolution (HR) image from single low-resolution (LR) input. And these SR have shown great potential for many practical applications. Unfortunately, most of popular example approaches extract features limited training images. These images insufficient super resolution task. Our work is transfer some supplemental information other domains. Therefore, in this paper, new algorithm Transfer Learning based on A+ (TLA) proposed First, we datasets construct dictionary. Then, sample selection, more samples supplemented the basic samples. In experiments, seek explore what types can provide appropriate Experimental results indicate that our approach superior when transferring containing similar content with original data.

参考文章(20)
Radu Timofte, Vincent De Smet, Luc Van Gool, A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution asian conference on computer vision. ,vol. 9006, pp. 111- 126 ,(2014) , 10.1007/978-3-319-16817-3_8
Aude Oliva, Antonio Torralba, Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope International Journal of Computer Vision. ,vol. 42, pp. 145- 175 ,(2001) , 10.1023/A:1011139631724
Kun Li, Yanming Zhu, Jingyu Yang, Jianmin Jiang, Video super-resolution using an adaptive superpixel-guided auto-regressive model Pattern Recognition. ,vol. 51, pp. 59- 71 ,(2016) , 10.1016/J.PATCOG.2015.08.008
Roman Zeyde, Michael Elad, Matan Protter, On Single Image Scale-Up Using Sparse-Representations Curves and Surfaces. pp. 711- 730 ,(2012) , 10.1007/978-3-642-27413-8_47
Dengxin Dai, Till Kroeger, Radu Timofte, Luc Van Gool, Metric imitation by manifold transfer for efficient vision applications computer vision and pattern recognition. pp. 3527- 3536 ,(2015) , 10.1109/CVPR.2015.7298975
Yanming Zhu, Kun Li, Jianmin Jiang, Video super-resolution based on automatic key-frame selection and feature-guided variational optical flow Signal Processing-image Communication. ,vol. 29, pp. 875- 886 ,(2014) , 10.1016/J.IMAGE.2014.06.005
Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, Andrea Vedaldi, Describing Textures in the Wild computer vision and pattern recognition. pp. 3606- 3613 ,(2014) , 10.1109/CVPR.2014.461
Sheng-hua Zhong, Yan Liu, Qing-cai Chen, None, Visual orientation inhomogeneity based scale-invariant feature transform Expert Systems With Applications. ,vol. 42, pp. 5658- 5667 ,(2015) , 10.1016/J.ESWA.2015.01.012
Jifei Yu, Xinbo Gao, Dacheng Tao, Xuelong Li, Kaibing Zhang, A Unified Learning Framework for Single Image Super-Resolution IEEE Transactions on Neural Networks. ,vol. 25, pp. 780- 792 ,(2014) , 10.1109/TNNLS.2013.2281313
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, Li Fei-Fei, ImageNet: A large-scale hierarchical image database computer vision and pattern recognition. pp. 248- 255 ,(2009) , 10.1109/CVPR.2009.5206848