Visual orientation inhomogeneity based scale-invariant feature transform

作者: Sheng-hua Zhong , Yan Liu , Qing-cai Chen , None

DOI: 10.1016/J.ESWA.2015.01.012

关键词:

摘要: Provide the evidence of existence least important visual orientation.Novel algorithm with high efficiency is proposed to detect and describe local feature.Better performance for detection matching, comparable recognition. Scale-invariant feature transform (SIFT) an features in images. In last fifteen years, SIFT plays a very role multimedia content analysis, such as image classification retrieval, because its attractive character on invariance. This paper intends explore new path research by making use findings from neuroscience. We propose more efficient compact scale-invariant detector descriptor simulating orientation inhomogeneity human system. validate that (V-SIFT) can achieve better or at less computation resource time cost various computer vision tasks under real world conditions, matching object work also illuminates wider range opportunities integrating other position-dependent detectors descriptors.

参考文章(30)
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
Aude Oliva, Antonio Torralba, Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope International Journal of Computer Vision. ,vol. 42, pp. 145- 175 ,(2001) , 10.1023/A:1011139631724
Anna Bosch, Andrew Zisserman, Xavier Muñoz, Scene Classification Via pLSA Computer Vision – ECCV 2006. pp. 517- 530 ,(2006) , 10.1007/11744085_40
Herbert Bay, Tinne Tuytelaars, Luc Van Gool, SURF: speeded up robust features european conference on computer vision. ,vol. 1, pp. 404- 417 ,(2006) , 10.1007/11744023_32
Ivan Laptev, Tony Lindeberg, Local Descriptors for Spatio-temporal Recognition Spatial Coherence for Visual Motion Analysis. ,vol. 3667, pp. 91- 103 ,(2006) , 10.1007/11676959_8
Yu Qian, Rui Hui, Xiaohong Gao, 3D CBIR with sparse coding for image-guided neurosurgery Signal Processing. ,vol. 93, pp. 1673- 1683 ,(2013) , 10.1016/J.SIGPRO.2012.10.020
Hefei Ling, Lingyu Yan, Fuhao Zou, Cong Liu, Hui Feng, Fast image copy detection approach based on local fingerprint defined visual words Signal Processing. ,vol. 93, pp. 2328- 2338 ,(2013) , 10.1016/J.SIGPRO.2012.08.011
Guokang Zhu, Qi Wang, Yuan Yuan, Pingkun Yan, SIFT on manifold: An intrinsic description Neurocomputing. ,vol. 113, pp. 227- 233 ,(2013) , 10.1016/J.NEUCOM.2013.01.020
Gertjan J. Burghouts, Jan-Mark Geusebroek, Performance evaluation of local colour invariants Computer Vision and Image Understanding. ,vol. 113, pp. 48- 62 ,(2009) , 10.1016/J.CVIU.2008.07.003
Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, Andrew Zisserman, The Pascal Visual Object Classes Challenge: A Retrospective International Journal of Computer Vision. ,vol. 111, pp. 98- 136 ,(2015) , 10.1007/S11263-014-0733-5