Extreme interfacial waves

作者: R. H. J. Grimshaw , D. I. Pullin

DOI: 10.1063/1.865477

关键词:

摘要: Numerical solutions are presented for large‐amplitude interfacial waves of extreme form on the interface between two fluids different densities in Boussinesq approximation. The flow lower fluid is irrotational, but upper may have constant, nonzero vorticity. Only symmetric calculated. results suggest limiting wave profiles which separate portions touch, forming stagnant zones one imbedded other fluid.

参考文章(8)
B. Chen, P. G. Sallman, Numerical Evidence for the Existence of New Types of Gravity Waves of Permanent Form on Deep Water Studies in Applied Mathematics. ,vol. 62, pp. 1- 21 ,(1980) , 10.1002/SAPM19806211
J. A. Simmen, P. G. Saffman, Steady Deep‐Water Waves on a Linear Shear Current Studies in Applied Mathematics. ,vol. 73, pp. 35- 57 ,(1985) , 10.1002/SAPM198573135
R. E. L. Turner, J. -M. Vanden-Broeck, The limiting configuration of interfacial gravity waves Physics of Fluids. ,vol. 29, pp. 372- 375 ,(1986) , 10.1063/1.865721
Jean-Marc Vanden-Broeck, STANFORD UNIV CALIF DEPT OF MATHEMATICS, Numerical calculation of gravity-capillary interfacial waves of finite amplitude Physics of Fluids. ,vol. 23, pp. 1723- 1726 ,(1980) , 10.1063/1.863197
DI Pullin, Roger Grimshaw, Nonlinear interfacial progressive waves near a boundary in a Boussinesq fluid Physics of Fluids. ,vol. 26, pp. 897- 905 ,(1983) , 10.1063/1.864239
DI Pullin, Roger Grimshaw, Interfacial progressive gravity waves in a two-layer shear flow Physics of Fluids. ,vol. 26, pp. 1731- 1739 ,(1983) , 10.1063/1.864372
E. G. Broadbent, D. W. Moore, Waves of extreme form on a layer of uniform vorticity Physics of Fluids. ,vol. 28, pp. 1561- 1563 ,(1985) , 10.1063/1.864991
Integral properties of periodic gravity waves of finite amplitude Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 342, pp. 157- 174 ,(1975) , 10.1098/RSPA.1975.0018