Automatically Composing Representation Transformations as a Means for Generalization

作者: Thomas L. Griffiths , Sergey Levine , Abhishek Gupta , Michael B. Chang

DOI:

关键词:

摘要: How can we build a learner that can capture the essence of what makes a hard problem more complex than a simple one, break the hard problem along characteristic lines into …

参考文章(92)
Learning to learn Learning to learn. pp. 354- 354 ,(1998) , 10.1007/978-1-4615-5529-2
Koray Kavukcuoglu, Max Jaderberg, Karen Simonyan, Andrew Zisserman, Spatial transformer networks neural information processing systems. ,vol. 28, pp. 2017- 2025 ,(2015)
Jerry A. Fodor, Ernest Lepore, The compositionality papers ,(2002)
Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization arXiv: Learning. ,(2014)
Ilya Sutskever, Wojciech Zaremba, Learning to Execute arXiv: Neural and Evolutionary Computing. ,(2014)
Pushmeet Kohli, Joshua B. Tenenbaum, Tejas D. Kulkarni, William F. Whitney, Deep convolutional inverse graphics network neural information processing systems. ,vol. 28, pp. 2539- 2547 ,(2015)
Eyal Dechter, Joshua B. Tenenbaum, Ryan P. Adams, Jon Malmaud, Bootstrap learning via modular concept discovery international joint conference on artificial intelligence. pp. 1302- 1309 ,(2013)
Çaglar Gülçehre, Yoshua Bengio, Yoshua Bengio, Yoshua Bengio, KyungHyun Cho, Junyoung Chung, Empirical evaluation of gated recurrent neural networks on sequence modeling arXiv: Neural and Evolutionary Computing. ,(2014)
Alison Gopnik, Henry M. Wellman, Reconstructing constructivism: Causal models, Bayesian learning mechanisms, and the theory theory. Psychological Bulletin. ,vol. 138, pp. 1085- 1108 ,(2012) , 10.1037/A0028044