Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequalities

作者: S. Kesavan , Pacella Filomena

DOI: 10.1080/00036819408840266

关键词:

摘要: In this paper, it is proved that positive solutions of non linear equation involving the N–Laplacian in a ball RN with Dirichlet boundary condition are radial and radially decreasing provided nonlinearity continuous function ƒ(t) (satisfying suitable growth conditions) which strictly for t>0. The method generalizes Lions Laplacian two dimensions. present paper can also be extended to an analogous mixed value problem convex cone.

参考文章(10)
Henri Berestycki, Filomena Pacella, Symmetry properties for positive solutions of elliptic equations with mixed boundary conditions Journal of Functional Analysis. ,vol. 87, pp. 177- 211 ,(1989) , 10.1016/0022-1236(89)90007-4
B. Gidas, Wei-Ming Ni, L. Nirenberg, Symmetry and related properties via the maximum principle Communications in Mathematical Physics. ,vol. 68, pp. 209- 243 ,(1979) , 10.1007/BF01221125
H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method Boletim Da Sociedade Brasileira De Matematica. ,vol. 22, pp. 1- 37 ,(1991) , 10.1007/BF01244896
S Kichenassamy, J Smoller, On the existence of radial solutions of quasilinear elliptic equations Nonlinearity. ,vol. 3, pp. 677- 694 ,(1990) , 10.1088/0951-7715/3/3/008
Mohammed Guedda, Laurent Véron, None, Quasilinear elliptic equations involving critical Sobolev exponents Nonlinear Analysis-theory Methods & Applications. ,vol. 13, pp. 879- 902 ,(1989) , 10.1016/0362-546X(89)90020-5
Pierre-Louis Lions, Filomena Pacella, Isoperimetric inequalities for convex cones Proceedings of the American Mathematical Society. ,vol. 109, pp. 477- 485 ,(1990) , 10.1090/S0002-9939-1990-1000160-1
P. L. Lionst, Two geometrical properties of solutions of semilinear problems Applicable Analysis. ,vol. 12, pp. 267- 272 ,(1981) , 10.1080/00036818108839367
William P. Ziemer, Minimal rearrangements of Sobolev functions. Crelle's Journal. ,vol. 384, pp. 153- 179 ,(1988)
Giorgio Talenti, Elliptic equations and rearrangements Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 3, pp. 697- 718 ,(1976)