Dense single-valuedness of monotone operators

作者: Eduardo H. Zarantonello

DOI: 10.1007/BF02764602

关键词:

摘要: It is shown that the set of points for which a monotone mappingT:X→X * from separable Banach space into its dual not single-valued has no interior; if dimX<∞ and intD(T)≠ϕ then Lebesgue measure zero. Moreover, accretive mappingsT:X→X itself, dimension whose images contain balls codimension larger thank does exceedk. Applications to convexity are given.

参考文章(5)
EDUARDO H. ZARANTONELLO, Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory Contributions to Nonlinear Functional Analysis#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 12–14, 1971. pp. 237- 424 ,(1971) , 10.1016/B978-0-12-775850-3.50013-3
S. Mazur, Über schwache Konvergenz in den Raümen ($L^{p}$) Studia Mathematica. ,vol. 4, pp. 128- 133 ,(1933) , 10.4064/SM-4-1-128-133
R. D. Anderson, V. L. Klee, Jr., Convex functions and upper semi-continuous collections Duke Mathematical Journal. ,vol. 19, pp. 349- 357 ,(1952) , 10.1215/S0012-7094-52-01935-2
R. T. Rockafellar, Local boundedness of nonlinear, monotone operators. The Michigan Mathematical Journal. ,vol. 16, pp. 397- 407 ,(1969) , 10.1307/MMJ/1029000324
Witold Hurewicz, Henry Wallman, Dimension Theory (PMS-4) Princeton University Press. ,(1942) , 10.1515/9781400875665