Ein Problem Über die Beste Approximation in Hilberträumen

作者: Hubert Berens

DOI: 10.1007/978-3-0348-9369-5_23

关键词: Chebyshev filterConjectureHilbert spaceDiscrete mathematicsMathematics

摘要: In the beginning sixties V. L. Klee conjectured that there exist nonconvex Chebyshev sets in an infinite dimensional Hilbert space. Up to today no real progress has been made proving or disproving conjecture. The author wants discuss a modified version of Klees’s conjecture which seems be some independent interest.

参考文章(5)
Colloquium on Convexity, Proceedings of the Colloquium on Convexity, Copenhagen, 1965 Københavns universitets Matematiske institut. ,(1967)
M. B. Suryanarayana, Monotonicity and upper semicontinuity Bulletin of the American Mathematical Society. ,vol. 82, pp. 936- 939 ,(1976) , 10.1090/S0002-9904-1976-14225-5
Edgar Asplund, CEBYSEV SETS IN HILBERT SPACE Transactions of the American Mathematical Society. ,vol. 144, pp. 235- 240 ,(1969) , 10.1090/S0002-9947-1969-0253023-7
Eduardo H. Zarantonello, Dense single-valuedness of monotone operators Israel Journal of Mathematics. ,vol. 15, pp. 158- 166 ,(1973) , 10.1007/BF02764602
H. Berens, U. Westphal, Kodissipative Metrische Projektionen in Normierten Linearen Räumen Linear Spaces and Approximation / Lineare Räume und Approximation. pp. 119- 130 ,(1978) , 10.1007/978-3-0348-7180-8_12