Kodissipative Metrische Projektionen in Normierten Linearen Räumen

作者: H. Berens , U. Westphal

DOI: 10.1007/978-3-0348-7180-8_12

关键词:

摘要: Let H be a real inner product space with . For any subset K of the metric projection PK:H → P(K) is monotone, i.e., for (x,k), (x’,k’) ∈PK ≥ 0. This property used to characterize closed convex sets in Hilbert space.

参考文章(12)
EDUARDO H. ZARANTONELLO, Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory Contributions to Nonlinear Functional Analysis#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 12–14, 1971. pp. 237- 424 ,(1971) , 10.1016/B978-0-12-775850-3.50013-3
Colloquium on Convexity, Proceedings of the Colloquium on Convexity, Copenhagen, 1965 Københavns universitets Matematiske institut. ,(1967)
L P Vlasov, APPROXIMATIVE PROPERTIES OF SETS IN NORMED LINEAR SPACES Russian Mathematical Surveys. ,vol. 28, pp. 1- 66 ,(1973) , 10.1070/RM1973V028N06ABEH001624
Dan Amir, Frank Deutsch, Suns, moons, and quasi-polyhedra Journal of Approximation Theory. ,vol. 6, pp. 176- 201 ,(1972) , 10.1016/0021-9045(72)90073-1
Edgar Asplund, CEBYSEV SETS IN HILBERT SPACE Transactions of the American Mathematical Society. ,vol. 144, pp. 235- 240 ,(1969) , 10.1090/S0002-9947-1969-0253023-7
Heinrich Mann, Untersuchungen über Wabenzellen bei allgemeiner Minkowskischer Metrik Monatshefte für Mathematik. ,vol. 42, pp. 417- 424 ,(1935) , 10.1007/BF01733304
M. G. Crandall, T. M. Liggett, Generation of Semi-Groups of Nonlinear Transformations on General Banach Spaces American Journal of Mathematics. ,vol. 93, pp. 265- ,(1971) , 10.2307/2373376
R. R. Phelps, Convex sets and nearest points Proceedings of the American Mathematical Society. ,vol. 8, pp. 790- 797 ,(1957) , 10.1090/S0002-9939-1957-0087897-7