Stereological determination of structural anisotropy

作者: Ken-Ichi Kanatani

DOI: 10.1016/0020-7225(84)90055-7

关键词:

摘要: Abstract A general mathematical formulation is given to the problem of determining structural anisotropy by means stereological principle. Three cases are considered—distributed curves in plane, distributed space and surfaces space. The number intersections with a probe line or plane viewed as transformation, which termed “Buffon transform”, between two distribution densities, form its inverse transform given. Then, change due deformation material formulated, strain shown be determined from data intersection counting. All equations written Cartesian tensor invariant coordinate translations rotations. typical example also

参考文章(9)
Luis A. Santaló, Introduction to integral geometry Hermann. ,(1953)
J. E. Hilliard, Determination of Structural Anisotropy Stereology. pp. 219- 227 ,(1967) , 10.1007/978-3-642-88260-9_40
E. M. Philofsky, J. E. Flinn, A New Method for Measuring Strain Distribution Stereology. pp. 110- 111 ,(1967) , 10.1007/978-3-642-88260-9_19
Kanatani Ken-Ichi, DISTRIBUTION OF DIRECTIONAL DATA AND FABRIC TENSORS International Journal of Engineering Science. ,vol. 22, pp. 149- 164 ,(1984) , 10.1016/0020-7225(84)90090-9
Ken-ichi Kanatani, Detection of surface orientation and motion from texture by a stereoogical technique. Artificial Intelligence. ,vol. 23, pp. 213- 237 ,(1984) , 10.1016/0004-3702(84)90010-9
A. Cemal Eringen, P. R. Paslay, Nonlinear theory of continuous media ,(1962)
Ken-Ichi Kanatani, Stereological determination of structural anisotropy International Journal of Engineering Science. ,vol. 22, pp. 531- 546 ,(1984) , 10.1016/0020-7225(84)90055-7