An algebraic approach to form factors

作者: Max R. Niedermaier

DOI: 10.1016/0550-3213(95)00096-B

关键词:

摘要: An associative ∗-algebra is introduced (containing a TTR-algebra as subalgebra) that implements the form factor axioms, and hence indirectly Wightman in following sense: Each T-invariant linear functional over algebra automatically satisfies all axioms. It argued this answers question (posed Bethe ansatz) how to select dynamically correct representations of TTR-algebra. Applied case integrable QFTs with diagonal factorized scattering theory universal formula for eigenvalues conserved charges emerges.

参考文章(30)
Tetsuji Miwa, Michio Jimbo, Algebraic Analysis of Solvable Lattice Models. ,(1994)
Boris A Kupershmidt, Integrable and superintegrable systems World Scientific. ,(1990) , 10.1142/1174
M. R. Niedermaier, On the Free Field Realization of Form Factors arXiv: High Energy Physics - Theory. ,(1995)
Denis Bernard, André LeClair, Quantum group symmetries and non-local currents in 2D QFT Communications in Mathematical Physics. ,vol. 142, pp. 99- 138 ,(1991) , 10.1007/BF02099173
Mo-Lin Ge, Chen Ning Yang, Braid Group Knot Theory and Statistical Mechanics ,(1989)
Wolfgang Rindler, Roger Penrose, Spinors and space-time ,(1984)
A. Fring, D.I. Olive, The fusing rule and the scattering matrix of affine Toda theory Nuclear Physics. ,vol. 379, pp. 429- 447 ,(1992) , 10.1016/0550-3213(92)90602-8
André LeClair, Spectrum generating affine Lie algebras in massive field theory Nuclear Physics. ,vol. 415, pp. 734- 777 ,(1994) , 10.1016/0550-3213(94)90308-5
Rudolf Haag, Meinhard E. Mayer, Local quantum physics ,(1992)