Exact form factors in integrable quantum field theories: the sine-Gordon model

作者: A. Fring , M. Karowski , Hratchya M. Babujian , A. Zapletal

DOI: 10.1016/S0550-3213(98)00737-8

关键词:

摘要: We provide detailed arguments on how to derive properties of generalized form factors, originally proposed by one the authors (M.K.) and Weisz twenty years ago, solely based assumption "minimal analyticity" validity LSZ reduction formalism. These constitute consistency equations which allow explicit evaluation n-particle factors once scattering matrix is known. The give rise a Riemann-Hilbert problem. Exploiting "off-shell" Bethe ansatz we propose general formula for an odd number particles. For Sine-Gordon model alias massive Thirring exemplify solution several operators. carry out check three particle factor against perturbation theory thus confirm

参考文章(111)
Tetsuji Miwa, Michio Jimbo, Algebraic Analysis of Solvable Lattice Models. ,(1994)
Feodor A. Smirnov, Counting the local fields in sine-Gordon theory Nuclear Physics. ,vol. 453, pp. 807- 824 ,(1995) , 10.1016/0550-3213(95)00423-P
V. Tarasov, S. Pakuliak, A. Nakayashiki, On solutions of the KZ and qKZ equations at level zero Annales De L Institut Henri Poincare-physique Theorique. ,vol. 71, pp. 459- 496 ,(1997)
M. Karowski, H.J. Thun, Complete S-matrix of the massive thirring model Nuclear Physics. ,vol. 130, pp. 295- 308 ,(1977) , 10.1016/0550-3213(77)90108-0
A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, Two-dimensional generalized Toda lattice Communications in Mathematical Physics. ,vol. 79, pp. 473- 488 ,(1981) , 10.1007/BF01209308