The Bootstrap Program for 1+1 Dimensional Field Theoretic Models with Soliton Behaviour

作者: M. Karowski

DOI: 10.1007/978-1-4684-3722-5_12

关键词:

摘要: A review is given of the present status bootstrap program for 1+1 dimensional field theoretic models with soliton behaviour. From existence infinitely many conservation laws, unitarity, crossing, “minimality”, internal symmetries, and some assumptions on one particle spectrum first exact S-matrix derived explicitely. We repeat procedure massive Thirring-model (alias Sine-Gordon) starting two fermion soliton) scattering then deriving boundstate breather) S-matrix. The same complete obtained by determination boson (breather) boson-soliton soliton-soliton from assumption that a soliton-boson bound state. By means we obtain Gross-Neveu including kink scattering. Then generalized form factors Green’s functions Z(2)-Ising model in scaling limit are calculated.

参考文章(23)
R. Shankar, E. Witten, The S-matrix of the kinks of the model Nuclear Physics B. ,vol. 141, pp. 349- 363 ,(1978) , 10.1016/0550-3213(78)90031-7
M. Karowski, H.J. Thun, Complete S-matrix of the massive thirring model Nuclear Physics. ,vol. 130, pp. 295- 308 ,(1977) , 10.1016/0550-3213(77)90108-0
B. Berg, M. Karowski, P. Weisz, Construction of Green's functions from an exact S matrix Physical Review D. ,vol. 19, pp. 2477- 2479 ,(1979) , 10.1103/PHYSREVD.19.2477
Roger F. Dashen, Brosl Hasslacher, André Neveu, Nonperturbative methods and extended-hadron models in field theory. II. Two-dimensional models and extended hadrons Physical Review D. ,vol. 10, pp. 4130- 4138 ,(1974) , 10.1103/PHYSREVD.10.4130
P.H. Weisz, Exact quantum Sine-Gordon soliton form factors Physics Letters B. ,vol. 67, pp. 179- 182 ,(1977) , 10.1016/0370-2693(77)90097-1
M. Karowski, On the bound state problem in 1+1 dimensional field theories Nuclear Physics B. ,vol. 153, pp. 244- 252 ,(1979) , 10.1016/0550-3213(79)90600-X
B. Yoon, Infinite sequence of conserved currents in the sine-Gordon theory Physical Review D. ,vol. 13, pp. 3440- 3445 ,(1976) , 10.1103/PHYSREVD.13.3440