Wind Power Forecasting Using Neural Network Ensembles With Feature Selection

作者: Song Li , Peng Wang , Lalit Goel

DOI: 10.1109/TSTE.2015.2441747

关键词:

摘要: In this paper, a novel ensemble method consisting of neural networks, wavelet transform, feature selection, and partial least-squares regression (PLSR) is proposed for the generation forecasting wind farm. Based on conditional mutual information, selection technique developed to choose compact set input features model. order overcome nonstationarity power series improve accuracy, new wavelet-based scheme integrated into The individual forecasters are featured with different mixtures mother number decomposition levels. outputs combined form forecast output using PLSR method. To confirm effectiveness, examined real-world datasets compared other methods.

参考文章(37)
Rajesh G. Kavasseri, Krithika Seetharaman, Day-ahead wind speed forecasting using f-ARIMA models Renewable Energy. ,vol. 34, pp. 1388- 1393 ,(2009) , 10.1016/J.RENENE.2008.09.006
Aoife M. Foley, Paul G. Leahy, Antonino Marvuglia, Eamon J. McKeogh, Current methods and advances in forecasting of wind power generation Renewable Energy. ,vol. 37, pp. 1- 8 ,(2012) , 10.1016/J.RENENE.2011.05.033
D. Nguyen, B. Widrow, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights 1990 IJCNN International Joint Conference on Neural Networks. ,vol. 1990, pp. 21- 26 ,(1990) , 10.1109/IJCNN.1990.137819
José de Jesús Rubio, Stable and optimal controls of a proton exchange membrane fuel cell International Journal of Control. ,vol. 87, pp. 2338- 2347 ,(2014) , 10.1080/00207179.2014.913201
Ma Lei, Luan Shiyan, Jiang Chuanwen, Liu Hongling, Zhang Yan, A review on the forecasting of wind speed and generated power Renewable & Sustainable Energy Reviews. ,vol. 13, pp. 915- 920 ,(2009) , 10.1016/J.RSER.2008.02.002
P. Louka, G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados, I. Pytharoulis, G. Kallos, Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering Journal of Wind Engineering and Industrial Aerodynamics. ,vol. 96, pp. 2348- 2362 ,(2008) , 10.1016/J.JWEIA.2008.03.013
P. Pinson, H.Aa. Nielsen, H. Madsen, G. Kariniotakis, Skill forecasting from ensemble predictions of wind power Applied Energy. ,vol. 86, pp. 1326- 1334 ,(2009) , 10.1016/J.APENERGY.2008.10.009
Abbas Khosravi, Saeid Nahavandi, Combined Nonparametric Prediction Intervals for Wind Power Generation IEEE Transactions on Sustainable Energy. ,vol. 4, pp. 849- 856 ,(2013) , 10.1109/TSTE.2013.2253140
J. P. S. Catalao, H. M. I. Pousinho, V. M. F. Mendes, Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal IEEE Transactions on Sustainable Energy. ,vol. 2, pp. 50- 59 ,(2011) , 10.1109/TSTE.2010.2076359
Kanna Bhaskar, S. N. Singh, AWNN-Assisted Wind Power Forecasting Using Feed-Forward Neural Network IEEE Transactions on Sustainable Energy. ,vol. 3, pp. 306- 315 ,(2012) , 10.1109/TSTE.2011.2182215