Another Language for Describing Robot Motions: A Nonlinear Position-dependent Circuit Theory

作者: Suguru Arimoto

DOI: 10.1007/978-1-4471-1021-7_7

关键词:

摘要: Dynamics and control of nonlinear mechanical advanced mechatronic systems can be investigated more vividly efficiently by using corresponding position-dependent circuits that describe Lagrange’s equations motions interactions with objects or/and task environments. Such expressions via are indebted to lumped-parameter discretization as a set rigid bodies through motion due Newton’s second law. This observation is quite analogous validity electric derived versions Maxwell’s electromagnetic waves. Couplings mechanic actuator dynamcis also discussed. In such electromechanical the passivity should generalization impedance concept in order cope nonlinearities play crucial role their related problems. particular, it shown an input-output property gives rise necessary sufficient characterization H ∞-tuning for disturbance attenuation robotic systems, which give another system-theoretic interpretation energy conservation

参考文章(19)
Suguru Arimoto, Passivity of robot dynamics implies capability of motor program learning Springer, Berlin, Heidelberg. pp. 49- 68 ,(1991) , 10.1007/BFB0039265
Suguru ARIMOTO, A Class of Quasi-Natural Potentials and Hyper-Stable PID Servo-Loops for Nonlinear Robotic Systems Journal of the Society of Instrument and Control Engineers. ,vol. 30, pp. 1005- 1012 ,(1994) , 10.9746/SICETR1965.30.1005
Viktor Nikolaevich Popov, Hyperstability of Control Systems ,(1973)
J.C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis, State-space solutions to standard H/sub 2/ and H/sub infinity / control problems IEEE Transactions on Automatic Control. ,vol. 34, pp. 831- 847 ,(1989) , 10.1109/9.29425
A. Isidori, A. Astolfi, Disturbance attenuation and H/sub infinity /-control via measurement feedback in nonlinear systems IEEE Transactions on Automatic Control. ,vol. 37, pp. 1283- 1293 ,(1992) , 10.1109/9.159566
Morikazu Takegaki, Suguru Arimoto, A new feedback method for dynamic control of manipulators Journal of Dynamic Systems Measurement and Control-transactions of The Asme. ,vol. 103, pp. 119- 125 ,(1981) , 10.1115/1.3139651
P. Maisser, J. Steigenberger, Lagrange-Formalismus für diskrete elektromechanische Systeme ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. ,vol. 59, pp. 717- 730 ,(1979) , 10.1002/ZAMM.19790591206
A.J. van der Schaft, L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control IEEE Transactions on Automatic Control. ,vol. 37, pp. 770- 784 ,(1992) , 10.1109/9.256331