Real-time indoor navigation using smartphone sensors

作者: You Li , Peng Zhang , Xiaoji Niu , Yuan Zhuang , Haiyu Lan

DOI: 10.1109/IPIN.2015.7346966

关键词:

摘要: This paper presents an indoor navigation algorithm that uses multiple kinds of sensors and technologies, such as MEMS (i.e., gyros, accelerometers, magnetometers, a barometer), WiFi, magnetic matching. The corresponding real-time software on smartphones includes modules dead-reckoning, WiFi positioning, DR is used for providing continuous position solutions the blunder detection both fingerprinting Finally, matching results are passed into position-tracking module updates. Meanwhile, barometer to detect floor changes, so switch floors databases. was tested during 5th EvAAL competition. Position errors three quarters (75 %) test points (totally 62 were selected evaluate algorithm) under 6.6 m.

参考文章(23)
E. Mok, G. Retscher, Location determination using WiFi fingerprinting versus WiFi trilateration Journal of Location Based Services. ,vol. 1, pp. 145- 159 ,(2007) , 10.1080/17489720701781905
K. Abdulrahim, C. Hide, T. Moore, C. Hill, Aiding MEMS IMU with building heading for indoor pedestrian navigation ubiquitous positioning, indoor navigation, and location based service. pp. 1- 6 ,(2010) , 10.1109/UPINLBS.2010.5653986
Masakatsu Kourogi, Tomoya Ishikawa, Takeshi Kurata, A method of pedestrian dead reckoning using action recognition IEEE/ION Position, Location and Navigation Symposium. pp. 85- 89 ,(2010) , 10.1109/PLANS.2010.5507239
E. Pulido Herrera, H. Kaufmann, J. Secue, R. Quirós, G. Fabregat, Improving data fusion in personal positioning systems for outdoor environments Information Fusion. ,vol. 14, pp. 45- 56 ,(2013) , 10.1016/J.INFFUS.2012.01.009
Beomju Shin, Jung Ho Lee, Taikjin Lee, Hyung Seok Kim, Enhanced weighted K-nearest neighbor algorithm for indoor Wi-Fi positioning systems international conference on computing technology and information management. ,vol. 2, pp. 574- 577 ,(2012) , 10.4156/IJNCM.VOL2.ISSUE2.2
P. Davidson, J. Takala, Algorithm for Pedestrian Navigation Combining IMU Measurements and Gait Models Gyroscopy and Navigation. ,vol. 4, pp. 79- 84 ,(2013) , 10.1134/S207510871302003X
E. Foxlin, Pedestrian tracking with shoe-mounted inertial sensors IEEE Computer Graphics and Applications. ,vol. 25, pp. 38- 46 ,(2005) , 10.1109/MCG.2005.140
Z. Xiang, S. Song, J. Chen, H. Wang, J. Huang, X. Gao, A wireless LAN-based indoor positioning technology Ibm Journal of Research and Development. ,vol. 48, pp. 617- 626 ,(2004) , 10.1147/RD.485.0617
Igor Leão dos Santos, Luci Pirmez, Érico T. Lemos, Flávia C. Delicato, Luiz A. Vaz Pinto, J. Neuman de Souza, Albert Y. Zomaya, A localized algorithm for Structural Health Monitoring using wireless sensor networks Information Fusion. ,vol. 15, pp. 114- 129 ,(2014) , 10.1016/J.INFFUS.2012.02.002
H. Naseri, M.R. Homaeinezhad, Improving measurement quality of a MEMS-based gyro-free inertial navigation system Sensors and Actuators A-physical. ,vol. 207, pp. 10- 19 ,(2014) , 10.1016/J.SNA.2013.12.011