Islanding detection for PV and DFIG using decision tree and AdaBoost algorithm

作者: Seyed Sohail Madani , Ali Abbaspour , Mojtaba Beiraghi , Payam Zamani Dehkordi , Ali Mohammad Ranjbar

DOI: 10.1109/ISGTEUROPE.2012.6465818

关键词:

摘要: Under smart grid environment, islanding detection plays an important role in reliable operation of distributed generation (DG) units. In this paper intelligent-based algorithm for PV and DFIG units is proposed. Decision tree used to classify instances. This rapid, simple, intelligible easy interpret. The error rate method reduced by Adaptive Boosting (AdaBoost) technique. proposed tested on a distribution system including PV, synchronous generator. Probable events the are simulated under diverse operating states generate classification data set. First second order derivatives locally measured electrical parameters construction 16-dimensional results indicate that Adaboost technique yields improved accuracy. capable detecting phenomenon with negligible power mismatch.

参考文章(25)
Renewable Energy and Storage Wiley-IEEE Press. pp. 140- 159 ,(2012) , 10.1002/9781118156117.CH7
Yoav Freund, Robert E Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting conference on learning theory. ,vol. 55, pp. 119- 139 ,(1997) , 10.1006/JCSS.1997.1504
N. W. A. Lidula, A. D. Rajapakse, A Pattern Recognition Approach for Detecting Power Islands Using Transient Signals—Part I: Design and Implementation IEEE Transactions on Power Delivery. ,vol. 25, pp. 3070- 3077 ,(2010) , 10.1109/TPWRD.2010.2053724
R.E. Schapire, The strength of weak learnability foundations of computer science. pp. 28- 33 ,(1989) , 10.1109/SFCS.1989.63451
Irvin J. Balaguer, Qin Lei, Shuitao Yang, Uthane Supatti, Fang Zheng Peng, Control for Grid-Connected and Intentional Islanding Operations of Distributed Power Generation IEEE Transactions on Industrial Electronics. ,vol. 58, pp. 147- 157 ,(2011) , 10.1109/TIE.2010.2049709
Tae-Ki An, Moon-Hyun Kim, A New Diverse AdaBoost Classifier 2010 International Conference on Artificial Intelligence and Computational Intelligence. ,vol. 1, pp. 359- 363 ,(2010) , 10.1109/AICI.2010.82
Mojtaba Seyedhosseini, Antonio R. C. Paiva, Tolga Tasdizen, Fast AdaBoost training using weighted novelty selection international joint conference on neural network. pp. 1245- 1250 ,(2011) , 10.1109/IJCNN.2011.6033366
Waleed K. A. Najy, H. H. Zeineldin, Ali H. Kasem Alaboudy, Wei Lee Woon, A Bayesian Passive Islanding Detection Method for Inverter-Based Distributed Generation Using ESPRIT IEEE Transactions on Power Delivery. ,vol. 26, pp. 2687- 2696 ,(2011) , 10.1109/TPWRD.2011.2159403
H.H. Zeineldin, S. Kennedy, Sandia Frequency-Shift Parameter Selection to Eliminate Nondetection Zones IEEE Transactions on Power Delivery. ,vol. 24, pp. 486- 487 ,(2009) , 10.1109/TPWRD.2008.2005362