A New Diverse AdaBoost Classifier

作者: Tae-Ki An , Moon-Hyun Kim

DOI: 10.1109/AICI.2010.82

关键词: Statistical classificationDecision treeMinificationIterative methodLinear combinationPattern recognitionComputer scienceClassifier (UML)Random subspace methodAdaBoostArtificial intelligenceMachine learning

摘要: … AdaBoost … new AdaBoost algorithm with considering diversity in chapter 3. In chapter 4, we compare performance between the real AdaBoost algorithm and the proposed Div-AdaBoost …

参考文章(10)
Louisa Lam, Classifier Combinations: Implementations and Theoretical Issues multiple classifier systems. pp. 77- 86 ,(2000) , 10.1007/3-540-45014-9_7
Ron Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection international joint conference on artificial intelligence. ,vol. 2, pp. 1137- 1143 ,(1995)
Xuchun Li, Lei Wang, Eric Sung, AdaBoost with SVM-based component classifiers Engineering Applications of Artificial Intelligence. ,vol. 21, pp. 785- 795 ,(2008) , 10.1016/J.ENGAPPAI.2007.07.001
Robert E. Schapire, Yoram Singer, Improved boosting algorithms using confidence-rated predictions conference on learning theory. ,vol. 37, pp. 80- 91 ,(1998) , 10.1145/279943.279960
Tin Kam Ho, The random subspace method for constructing decision forests IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 20, pp. 832- 844 ,(1998) , 10.1109/34.709601
Ludmila I. Kuncheva, Christopher J. Whitaker, Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy Machine Learning. ,vol. 51, pp. 181- 207 ,(2003) , 10.1023/A:1022859003006
Prem Melville, Raymond J. Mooney, Creating diversity in ensembles using artificial data Information Fusion. ,vol. 6, pp. 99- 111 ,(2005) , 10.1016/J.INFFUS.2004.04.001
Dianhong Wang, Liangxiao Jiang, An Improved Attribute Selection Measure for Decision Tree Induction fuzzy systems and knowledge discovery. ,vol. 4, pp. 654- 658 ,(2007) , 10.1109/FSKD.2007.161
Paul Viola, Michael J. Jones, Robust Real-Time Face Detection International Journal of Computer Vision. ,vol. 57, pp. 137- 154 ,(2004) , 10.1023/B:VISI.0000013087.49260.FB