Approximate Hamiltonian symmetries and related first integrals

作者: R. Naz , F.M. Mahomed

DOI: 10.1016/J.IJNONLINMEC.2020.103547

关键词:

摘要: Abstract We study approximate Hamiltonian symmetries and related first integrals for perturbed systems. The symmetry expressed in evolutionary form gives rise to an integral provided it satisfies certain criteria. provide formulas deduce any given three ways. As applications, mainly from mechanics, the orbit equation, two-dimensional deformed galaxy model, a second-order ODE containing arbitrary function equation arising fluid mechanics are analysed integrals.

参考文章(27)
G. Ünal, G. Gorali, Approximate First Integrals of a Galaxy Model Nonlinear Dynamics. ,vol. 28, pp. 195- 211 ,(2002) , 10.1023/A:1015004915682
R. Naz, Azam Chaudhry, F.M. Mahomed, Closed-form solutions for the Lucas–Uzawa model of economic growth via the partial Hamiltonian approach Communications in Nonlinear Science and Numerical Simulation. ,vol. 30, pp. 299- 306 ,(2016) , 10.1016/J.CNSNS.2015.06.033
R. Naz, F.M. Mahomed, Azam Chaudhry, A partial Hamiltonian approach for current value Hamiltonian systems Communications in Nonlinear Science and Numerical Simulation. ,vol. 19, pp. 3600- 3610 ,(2014) , 10.1016/J.CNSNS.2014.03.023
I. Naeem, F. M. Mahomed, Approximate partial Noether operators and first integrals for coupled nonlinear oscillators Nonlinear Dynamics. ,vol. 57, pp. 303- 311 ,(2009) , 10.1007/S11071-008-9441-4
Vladimir Dorodnitsyn, Roman Kozlov, Invariance and first integrals of continuous and discrete Hamiltonian equations Journal of Engineering Mathematics. ,vol. 66, pp. 253- 270 ,(2010) , 10.1007/S10665-009-9312-0
V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, Perturbation methods in group analysis Journal of Mathematical Sciences. ,vol. 55, pp. 1450- 1490 ,(1991) , 10.1007/BF01097534
Taha Aziz, F.M. Mahomed, D.P. Mason, A unified compatibility method for exact solutions of non-linear flow models of Newtonian and non-Newtonian fluids International Journal of Non-linear Mechanics. ,vol. 78, pp. 142- 155 ,(2016) , 10.1016/J.IJNONLINMEC.2015.01.003
T Feroze, A.H Kara, Group theoretic methods for approximate invariants and Lagrangians for some classes of y″+εF(t)y′+y=f(y,y′) International Journal of Non-linear Mechanics. ,vol. 37, pp. 275- 280 ,(2002) , 10.1016/S0020-7462(00)00111-6