On multiplicity problems for finite-dimensional representations of hyper loop algebras

作者: Dijana Jakelic , Adriano Moura

DOI:

关键词:

摘要: Given a hyper loop algebra over non-algebraically closed field, we address multiplicity problems in the underlying abelian tensor category of finite-dimensional representations. Namely, give formulas for l-characters simple objects, Jordan-Holder multiplicities Weyl modules, and Clebsch-Gordan coefficients.

参考文章(22)
William Fulton, Joe Harris, Representation Theory: A First Course ,(1991)
Jonathan Beck, Hiraku Nakajima, Crystal bases and two-sided cells of quantum affine algebras Duke Mathematical Journal. ,vol. 123, pp. 335- 402 ,(2004) , 10.1215/S0012-7094-04-12325-2X
Hiraku Nakajima, Quiver varieties and finite dimensional representations of quantum affine algebras Journal of the American Mathematical Society. ,vol. 14, pp. 145- 238 ,(2000) , 10.1090/S0894-0347-00-00353-2
Vyjayanthi Chari, A guide to quantum groups ,(1994)
Edward Frenkel, Nicolai Reshetikhin, The q-characters of representations of quantum affine algebras and deformations of W-algebras arXiv: Quantum Algebra. ,(1998)
Howard Garland, The arithmetic theory of loop algebras Journal of Algebra. ,vol. 53, pp. 480- 551 ,(1978) , 10.1016/0021-8693(78)90294-6
Peter Fiebig, Lusztig's conjecture as a moment graph problem Bulletin of the London Mathematical Society. ,vol. 42, pp. 957- 972 ,(2010) , 10.1112/BLMS/BDQ058
Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra Duke Mathematical Journal. ,vol. 73, pp. 383- 413 ,(1994) , 10.1215/S0012-7094-94-07317-1