Quiver varieties and finite dimensional representations of quantum affine algebras

作者: Hiraku Nakajima

DOI: 10.1090/S0894-0347-00-00353-2

关键词: Current algebraQuiverQuantum affine algebraPure mathematicsEquivariant mapAffine geometrySubvarietyAlgebraAffine representationHomomorphismMathematics

摘要: Introduction 145 1. Quantum affine algebra 150 2. Quiver variety 155 3. Stratification of M0 163 4. Fixed point subvariety 167 5. Hecke correspondence and induction quiver varieties 169 6. Equivariant K-theory 174 7. Freeness 178 8. Convolution 185 9. A homomorphism Uq(Lg)→ KGw×C ∗ (Z(w))⊗Z[q,q−1] Q(q) 192 10. Relations (I) 194 11. (II) 202 12. Integral structure 214 13. Standard modules 218 14. Simple 224 15. The Ue(g)-module 233 Added in proof 236 References

参考文章(51)
Vyjayanthi Chari, A. Pressley, Fundamental representations of Yangians and singularities of R-matrices Crelle's Journal. ,vol. 417, pp. 87- 128 ,(1991)
R. W. Thomason, Une formule de Lefschetz en $K$-théorie équivariante algébrique Duke Mathematical Journal. ,vol. 68, pp. 447- 462 ,(1992) , 10.1215/S0012-7094-92-06817-7
Towards the Chow ring of the Hilbert scheme of P2. Crelle's Journal. ,vol. 1993, pp. 33- 44 ,(1993) , 10.1515/CRLL.1993.441.33
Neil Chriss, Victor Ginzburg, Representation theory and complex geometry ,(1997)
V.G. Drinfeld, A New realization of Yangians and quantized affine algebras Sov.Math.Dokl.. ,vol. 36, pp. 212- 216 ,(1987)
George Lusztig, Introduction to Quantum Groups ,(1993)
David Mumford, Geometric Invariant Theory ,(1965)
Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras Duke Mathematical Journal. ,vol. 76, pp. 365- 416 ,(1994) , 10.1215/S0012-7094-94-07613-8
G. Hatayama, M. Okado, T. Takagi, A. Kuniba, Y. Yamada, Remarks on Fermionic Formula arXiv: Quantum Algebra. ,(1998)
Michael Kleber, Finite Dimensional Representations of Quantum Affine Algebras arXiv: Quantum Algebra. ,(1998)