q-Schur algebras and quantum Frobenius

作者: Kevin McGerty

DOI:

关键词:

摘要: The quantum Frobenius map and it splitting are shown to descend corresponding maps for generalized $q$-Schur algebras at a root of unity. We also define analogs any affine algebra, prove the results them.

参考文章(15)
George Lusztig, Introduction to Quantum Groups ,(1993)
Jonathan Beck, Hiraku Nakajima, Crystal bases and two-sided cells of quantum affine algebras Duke Mathematical Journal. ,vol. 123, pp. 335- 402 ,(2004) , 10.1215/S0012-7094-04-12325-2X
Hiraku Nakajima, Quiver varieties and finite dimensional representations of quantum affine algebras Journal of the American Mathematical Society. ,vol. 14, pp. 145- 238 ,(2000) , 10.1090/S0894-0347-00-00353-2
Peter Littelmann, Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras Journal of the American Mathematical Society. ,vol. 11, pp. 551- 567 ,(1998) , 10.1090/S0894-0347-98-00268-9
Hiraku Nakajima, Quiver varieties and Kac-Moody algebras Duke Mathematical Journal. ,vol. 91, pp. 515- 560 ,(1998) , 10.1215/S0012-7094-98-09120-7
Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra Duke Mathematical Journal. ,vol. 73, pp. 383- 413 ,(1994) , 10.1215/S0012-7094-94-07317-1
Shrawan Kumar, Peter Littelmann, Algebraization of Frobenius splitting via quantum groups Annals of Mathematics. ,vol. 155, pp. 491- 551 ,(2002) , 10.2307/3062124
R Dipper, G James, A Mathas, The (Q,q)-Schur algebra Proceedings of The London Mathematical Society. ,vol. 77, pp. 327- 361 ,(1989) , 10.1112/S0024611598000483
Edward Frenkel, Evgeny Mukhin, The q-Characters at Roots of Unity Advances in Mathematics. ,vol. 171, pp. 139- 167 ,(2002) , 10.1006/AIMA.2002.2084
A. A. Beilinson, G. Lusztig, R. MacPherson, A geometric setting for the quantum deformation of GLn Duke Mathematical Journal. ,vol. 61, pp. 655- 677 ,(1990) , 10.1215/S0012-7094-90-06124-1