A Multicriteria Weighted Vote-Based Classifier Ensemble for Heart Disease Prediction

作者: Saba Bashir , Usman Qamar , Farhan Hassan Khan

DOI: 10.1111/COIN.12070

关键词:

摘要: … This article presents an intelligent heart disease prediction … , decision tree induction using information gain (DT-Info), SVM, … are selected on the basis of the highest information gain. …

参考文章(47)
Micheline Kamber, Jiawei Han, Jian Pei, Data Mining: Concepts and Techniques ,(2000)
Daoqiang Zhang, Yaping Wang, Luping Zhou, Hong Yuan, Dinggang Shen, Alzheimer's Disease Neuroimaging Initiative, Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment NeuroImage. ,vol. 55, pp. 856- 867 ,(2011) , 10.1016/J.NEUROIMAGE.2011.01.008
S Muthukaruppan, Meng Joo Er, A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease Expert Systems With Applications. ,vol. 39, pp. 11657- 11665 ,(2012) , 10.1016/J.ESWA.2012.04.036
Steven N. Goodman, Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy Annals of Internal Medicine. ,vol. 130, pp. 995- 1004 ,(1999) , 10.7326/0003-4819-130-12-199906150-00008
Douglas H. Johnson, The Insignificance of Statistical Significance Testing The Journal of Wildlife Management. ,vol. 63, pp. 763- 772 ,(1999) , 10.2307/3802789
Jaime Carbonell, Robert Biederman, Mark Doyle, Selen Uguroglu, Cost-sensitive risk stratification in the diagnosis of heart disease national conference on artificial intelligence. pp. 2335- 2340 ,(2012)
Ruud Wetzels, Dora Matzke, Michael D. Lee, Jeffrey N. Rouder, Geoffrey J. Iverson, Eric-Jan Wagenmakers, Statistical Evidence in Experimental Psychology An Empirical Comparison Using 855 t Tests Perspectives on Psychological Science. ,vol. 6, pp. 291- 298 ,(2011) , 10.1177/1745691611406923
K. Thirupal Reddy, M. V. Subba Reddy, Rami Reddy, B. Jaya, Heart Disease Prediction System Using Naïve Bayes ,(2012)
Shamsher Bahadur, , Predict the Diagnosis of Heart Disease Patients Using Classification Mining Techniques IOSR Journal of Agriculture and Veterinary Science. ,vol. 4, pp. 60- 64 ,(2013) , 10.9790/2380-0426164