Optimising weights for heterogeneous ensemble of classifiers with differential evolution

作者: Mohammad Nazmul Haque , M Nasimul Noman , Regina Berretta , Pablo Moscato

DOI: 10.1109/CEC.2016.7743800

关键词:

摘要: The classification performance of a weighted voting ensemble classifiers largely depends on the proper weight chosen for each base classifier's vote. In this paper, we propose use Differential Evolution algorithm adjustment voting-weights used in heterogeneous (HEoC). We average Matthews Correlation Coefficient (MCC), calculated over 10-fold cross-validation, as quality measure an ensemble. applied vanilla DE to maximise MCC score training dataset. optimises classifiers' weights order attain better generalisation testing datasets. Experiments were performed using 10 binary-class datasets taken from UCI-Machine Learning Repository. results show consistent and superior constructed ensembles when compared with other well-known classifiers.

参考文章(31)
Yanmin Sun, Mohamed S. Kamel, Andrew K. C. Wong, Empirical Study on Weighted Voting Multiple Classifiers Pattern Recognition and Data Mining. pp. 335- 344 ,(2005) , 10.1007/11551188_36
Michal Wozniak, Konrad Jackowski, Some Remarks on Chosen Methods of Classifier Fusion Based on Weighted Voting hybrid artificial intelligence systems. pp. 541- 548 ,(2009) , 10.1007/978-3-642-02319-4_65
R. M. Valdovinos, J. S. Sánchez, Combining Multiple Classifiers with Dynamic Weighted Voting hybrid artificial intelligence systems. pp. 510- 516 ,(2009) , 10.1007/978-3-642-02319-4_61
Rainer Storn, Kenneth Price, Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces Journal of Global Optimization. ,vol. 11, pp. 341- 359 ,(1997) , 10.1023/A:1008202821328
Kenneth V. Price, An introduction to differential evolution New ideas in optimization. pp. 79- 108 ,(1999)
Harris Georgiou, Michael Mavroforakis, Sergios Theodoridis, A Game-Theoretic Approach to Weighted Majority Voting for Combining SVM Classifiers Artificial Neural Networks – ICANN 2006. pp. 284- 292 ,(2006) , 10.1007/11840817_30
Nikunj C. Oza, Kagan Tumer, Classifier ensembles: Select real-world applications Information Fusion. ,vol. 9, pp. 4- 20 ,(2008) , 10.1016/J.INFFUS.2007.07.002
Giuseppe Jurman, Samantha Riccadonna, Cesare Furlanello, A Comparison of MCC and CEN Error Measures in Multi-Class Prediction PLoS ONE. ,vol. 7, pp. e41882- ,(2012) , 10.1371/JOURNAL.PONE.0041882
Asif Ekbal, Sriparna Saha, Weighted Vote-Based Classifier Ensemble for Named Entity Recognition ACM Transactions on Asian Language Information Processing. ,vol. 10, pp. 1- 37 ,(2011) , 10.1145/1967293.1967296
Juan J. Durillo, Antonio J. Nebro, jMetal: A Java framework for multi-objective optimization Advances in Engineering Software. ,vol. 42, pp. 760- 771 ,(2011) , 10.1016/J.ADVENGSOFT.2011.05.014