Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin

作者: R. C. H. Cheng , N. A. K. Amin

DOI: 10.1111/J.2517-6161.1983.TB01268.X

关键词:

摘要: SUMMARY A general method of estimating parameters in continuous univariate distributions is proposed. It especially suited to cases where one the an unknown shifted origin. This occurs, for example, three-parameter lognormal, gamma and Weibull models. For such it known that maximum likelihood (ML) estimation can break down because unbounded this lead inconsistent estimators. Properties proposed are described. In particular shown give consistent estimators with asymptotic efficiency equal ML when these exist. Moreover gives consistent, asymptotically efficient situations fails. Examples given including numerical ones showing advantages method.

参考文章(32)
Dallas R. Wingo, The use of interior penalty functions to overcome lognormal distribution parameter estimation anomalies Journal of Statistical Computation and Simulation. ,vol. 4, pp. 49- 61 ,(1975) , 10.1080/00949657508810109
Satya D. Dubey, Asymptotic efficiencies of the moment estimators for the parameters of the weibull laws Naval Research Logistics Quarterly. ,vol. 13, pp. 265- 288 ,(1966) , 10.1002/NAV.3800130305
A. H. Munro, R. A. J. Wixley, Estimators Based on Order Statistics of Small Samples from a Three-Parameter Lognormal Distribution Journal of the American Statistical Association. ,vol. 65, pp. 212- 225 ,(1970) , 10.1080/01621459.1970.10481075
V. S. HUZURBAZAR, THE LIKELIHOOD EQUATION, CONSISTENCY AND THE MAXIMA OF THE LIKELIHOOD FUNCTION Annals of Human Genetics. ,vol. 14, pp. 185- 200 ,(1947) , 10.1111/J.1469-1809.1947.TB02394.X
Samuel Kotz, N. Balakrishnan, Norman Lloyd Johnson, Continuous univariate distributions ,(1994)
Stelios H Zanakis, A simulation study of some simple estimators for the three-parameter weibull distribution Journal of Statistical Computation and Simulation. ,vol. 9, pp. 101- 116 ,(1979) , 10.1080/00949657908810302
Pae-Tsi Yuan, On the Logarithmic Frequency Distribution and the Semi-Logarithmic Correlation Surface Annals of Mathematical Statistics. ,vol. 4, pp. 30- 74 ,(1933) , 10.1214/AOMS/1177732821
Norman P. Archer, A Computational Technique For Maximum Likelihood Estimation With Weibull Models IEEE Transactions on Reliability. ,vol. R-29, pp. 57- 62 ,(1980) , 10.1109/TR.1980.5220713
F. N. David, M. G. Kendall, A. Stuart, The Advanced Theory of Statistics. Vol II. Inference and Relationship Biometrika. ,vol. 49, pp. 285- ,(1962) , 10.2307/2333503