Target Density Normalization for Markov Chain Monte Carlo Algorithms

作者: Chang Liu , Allen Caldwell

DOI:

关键词:

摘要: Techniques for evaluating the normalization integral of target density Markov Chain Monte Carlo algorithms are described and tested numerically. It is assumed that algorithm has converged to distribution produced a set samples from density. These used evaluate sample mean, harmonic mean Laplace calculation A clear preference applied reduced support region found, guidelines given implementation.

参考文章(10)
E. T. Jaynes, Probability theory : the logic of science The Mathematical Intelligencer. ,vol. 27, pp. 83- 83 ,(2003) , 10.1017/CBO9780511790423
Michael A. Newton, Adrian E. Raftery, Approximate Bayesian Inference with the Weighted Likelihood Bootstrap Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 56, pp. 3- 26 ,(1994) , 10.1111/J.2517-6161.1994.TB01956.X
A. E. Gelfand, D. K. Dey, Bayesian Model Choice: Asymptotics and Exact Calculations Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 56, pp. 501- 514 ,(1994) , 10.1111/J.2517-6161.1994.TB01996.X
Nial Friel, Jason Wyse, Estimating the evidence – a review Statistica Neerlandica. ,vol. 66, pp. 288- 308 ,(2012) , 10.1111/J.1467-9574.2011.00515.X
Scott C. Schmidler, Douglas N. VanDerwerken, Parallel Markov Chain Monte Carlo arXiv: Computation. ,(2013)
Robert E. Kass, Bradley P. Carlin, Andrew Gelman, Radford M. Neal, Markov Chain Monte Carlo in Practice: A Roundtable Discussion The American Statistician. ,vol. 52, pp. 93- 100 ,(1998) , 10.1080/00031305.1998.10480547
Siddhartha Chib, Ivan Jeliazkov, Marginal Likelihood From the Metropolis–Hastings Output Journal of the American Statistical Association. ,vol. 96, pp. 270- 281 ,(2001) , 10.1198/016214501750332848
Andrew Gelman, Xiao-Li Meng, Simulating normalizing constants: from importance sampling to bridge sampling to path sampling Statistical Science. ,vol. 13, pp. 163- 185 ,(1998) , 10.1214/SS/1028905934
Luke Tierney, Joseph B. Kadane, Accurate Approximations for Posterior Moments and Marginal Densities Journal of the American Statistical Association. ,vol. 81, pp. 82- 86 ,(1986) , 10.1080/01621459.1986.10478240
N. Friel, A. N. Pettitt, Marginal likelihood estimation via power posteriors Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 70, pp. 589- 607 ,(2008) , 10.1111/J.1467-9868.2007.00650.X