Integration with an Adaptive Harmonic Mean Algorithm

作者: Vasyl Hafych , Rafael C. Schick , Rafael C. Schick , Marco Szalay , Philipp Eller

DOI:

关键词:

摘要: Numerically estimating the integral of functions in high dimensional spaces is a non-trivial task. A oft-encountered example calculation marginal likelihood Bayesian inference, context where sampling algorithm such as Markov Chain Monte Carlo provides samples function. We present an Adaptive Harmonic Mean Integration (AHMI) algorithm. Given drawn according to probability distribution proportional function, will estimate function and uncertainty by applying harmonic mean estimator adaptively chosen regions parameter space. describe its mathematical properties, report results using it on multiple test cases.

参考文章(16)
Chang Liu, Allen Caldwell, Target Density Normalization for Markov Chain Monte Carlo Algorithms arXiv: Data Analysis, Statistics and Probability. ,(2014)
E. T. Jaynes, Probability theory : the logic of science The Mathematical Intelligencer. ,vol. 27, pp. 83- 83 ,(2003) , 10.1017/CBO9780511790423
Michael A. Newton, Adrian E. Raftery, Approximate Bayesian Inference with the Weighted Likelihood Bootstrap Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 56, pp. 3- 26 ,(1994) , 10.1111/J.2517-6161.1994.TB01956.X
Nial Friel, Jason Wyse, Estimating the evidence – a review Statistica Neerlandica. ,vol. 66, pp. 288- 308 ,(2012) , 10.1111/J.1467-9574.2011.00515.X
Scott C. Schmidler, Douglas N. VanDerwerken, Parallel Markov Chain Monte Carlo arXiv: Computation. ,(2013)
John Skilling, Nested sampling for general Bayesian computation Bayesian Analysis. ,vol. 1, pp. 833- 859 ,(2006) , 10.1214/06-BA127
Michael Schmelling, Averaging correlated data Physica Scripta. ,vol. 51, pp. 676- 679 ,(1995) , 10.1088/0031-8949/51/6/002
Siddhartha Chib, Ivan Jeliazkov, Marginal Likelihood From the Metropolis–Hastings Output Journal of the American Statistical Association. ,vol. 96, pp. 270- 281 ,(2001) , 10.1198/016214501750332848
Andrew Gelman, Xiao-Li Meng, Simulating normalizing constants: from importance sampling to bridge sampling to path sampling Statistical Science. ,vol. 13, pp. 163- 185 ,(1998) , 10.1214/SS/1028905934
Darren Wraith, Christian P. Robert, Computational methods for Bayesian model choice Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering [AIP Conference Proceedings, Volume 1193]. ,vol. 1193, pp. 251- 262 ,(2009) , 10.1063/1.3275622