Bounded solutions of Carathéodory differential inclusions: a bound sets approach

作者: Jan Andres , Luisa Malaguti , Valentina Taddei

DOI: 10.1155/S108533750321006X

关键词:

摘要: A bound sets technique is developed for Floquet problems of Caratheodory differential inclusions. It relies on the construction either continuous or locally ipschitzian Lyapunov-like bounding functions. Proceeding sequentially, existence bounded trajectories then obtained. Nontrivial examples are supplied to illustrate our approach.

参考文章(35)
A. Augustynowicz, Z. Dzedzej, B. D. Gelman, The Solution Set to BVP for Some Functional Differential Inclusions Set-valued Analysis. ,vol. 6, pp. 257- 263 ,(1998) , 10.1023/A:1008618606813
M. Krasnosel’skiĭ, The Operator of Translation Along the Trajectories of Differential Equations Translations of Mathematical#N# Monographs. ,(2007) , 10.1090/MMONO/019
Jean L. Mawhin, Robert E. Gaines, Coincidence degree and nonlinear differential equations ,(1977)
Jürgen Appell, Anatolij S. Kalitvin, P. P. Zabreĭko, Partial integral operators and integro-differential equations Marcel Dekker. ,(2000)
Andrea Bacciotti, Francesca Ceragioli, Luisa Mazzi, Differential Inclusions and Monotonicity Conditions for Nonsmooth Lyapunov Functions Set-valued Analysis. ,vol. 8, pp. 299- 309 ,(2000) , 10.1023/A:1008763931789
Valentina Taddei, , Bound sets for Floquet boundary value problems: The nonsmooth case Discrete and Continuous Dynamical Systems. ,vol. 6, pp. 459- 473 ,(2000) , 10.3934/DCDS.2000.6.459
Rafael Ortega, A boundedness result of Landesman-Lazer type Differential and Integral Equations. ,vol. 8, pp. 729- 734 ,(1995)
Michel Valadier, Charles Castaing, Convex analysis and measurable multifunctions ,(1977)
Carole King Krueger, Rangachary Kannan, Advanced Analysis: on the Real Line ,(1996)
J. Mawhin, A. V. Pokrovskii, M. A. Krasnosel'Skii, NEW THEOREMS ON PERIODIC FORCED VIBRATIONS AND BOUNDED SOLUTIONS Soviet physics. Doklady. ,vol. 36, pp. 743- 745 ,(1991)