High-dimensional sparse factor modeling: Applications in gene expression genomics

作者: Carlos M. Carvalho , Jeffrey Chang , Joseph E. Lucas , Joseph R. Nevins , Quanli Wang

DOI: 10.1198/016214508000000869

关键词:

摘要: We describe studies in molecular profiling and biological pathway analysis that use sparse latent factor regression models for microarray gene expression data. discuss breast cancer applications key aspects of the modeling computational methodology. Our case aim to investigate characterize heterogeneity structure related specific oncogenic pathways, as well links between aggregate patterns profiles clinical biomarkers. Based on metaphor statistically derived “factors” representing “subpathway” structure, we explore decomposition fitted into subcomponents how these components overlay multiple known activity. methodology is based sparsity multivariate regression, ANOVA, models, a class combines all components. Hierarchical priors address questions dimension reduction co...

参考文章(38)
J R Nevins, Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth & Differentiation. ,vol. 9, pp. 585- 593 ,(1998)
Michael D Escobar, Mike West, Peter Müller, Peter M Uller, Hierarchical priors and mixture models, with applications in regression and density estimation ,(2006)
L. D. Miller, J. Smeds, J. George, V. B. Vega, L. Vergara, A. Ploner, Y. Pawitan, P. Hall, S. Klaar, E. T. Liu, J. Bergh, An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival Proceedings of the National Academy of Sciences of the United States of America. ,vol. 102, pp. 13550- 13555 ,(2005) , 10.1073/PNAS.0506230102
Harry Zuzan, Joseph Nevins, Rainer Spang, Jeffrey R. Marks, Mike West, Carrie Blanchette, Prediction and uncertainty in the analysis of gene expression profiles. in Silico Biology. ,vol. 2, pp. 369- 381 ,(2002)
Michael D. Escobar, Mike West, Computing Nonparametric Hierarchical Models Springer, New York, NY. pp. 1- 22 ,(1998) , 10.1007/978-1-4612-1732-9_1
Hemant Ishwaran, J. Sunil Rao, Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection Journal of the American Statistical Association. ,vol. 98, pp. 438- 455 ,(2003) , 10.1198/016214503000224
Kim-Anh Do, Peter Muller, Feng Tang, A Bayesian mixture model for differential gene expression Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 54, pp. 627- 644 ,(2005) , 10.1111/J.1467-9876.2005.05593.X
M. Sabbah, D. Courilleau, J. Mester, G. Redeuilh, Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 11217- 11222 ,(1999) , 10.1073/PNAS.96.20.11217
Charles J Sherr, Frank McCormick, The RB and p53 pathways in cancer Cancer Cell. ,vol. 2, pp. 103- 112 ,(2002) , 10.1016/S1535-6108(02)00102-2
Philippe Broët, Sylvia Richardson, François Radvanyi, Bayesian hierarchical model for identifying changes in gene expression from microarray experiments. Journal of Computational Biology. ,vol. 9, pp. 671- 683 ,(2002) , 10.1089/106652702760277381