A Sweepline Algorithm for Higher Order Voronoi Diagrams

作者: Maksym Zavershynskyi , Evanthia Papadopoulou

DOI: 10.1109/ISVD.2013.17

关键词:

摘要: We present an algorithm to construct order-k Voronoi diagrams with a sweepline technique. The sites can be points or line segments. has O(nk2 log n) time complexity and O(nk) space complexity.

参考文章(19)
Mark Dubowski, Cathy East Dubowski, The Big Sweep ,(2003)
Chih-Hung Liu, Evanthia Papadopoulou, D. T. Lee, An output-sensitive approach for the L 1 /L ∞ k-nearest-neighbor Voronoi diagram european symposium on algorithms. pp. 70- 81 ,(2011) , 10.1007/978-3-642-23719-5_7
Franz Aurenhammer, Voronoi diagrams—a survey of a fundamental geometric data structure ACM Computing Surveys. ,vol. 23, pp. 345- 405 ,(1991) , 10.1145/116873.116880
F. Dehne, R. Klein, The big sweep : On the power of the wavefront approach to Voronoi diagrams Algorithmica. ,vol. 17, pp. 19- 32 ,(1997) , 10.1007/BF02523236
Chee K. Yap, AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments Discrete & Computational Geometry. ,vol. 2, pp. 365- 393 ,(1987) , 10.1007/BF02187890
Rolf Klein, Elmar Langetepe, Zahra Nilforoushan, Abstract Voronoi diagrams revisited Computational Geometry. ,vol. 42, pp. 885- 902 ,(2009) , 10.1016/J.COMGEO.2009.03.002
Der-Tsai Lee, Robert L Drysdale, III, Generalization of Voronoi Diagrams in the Plane SIAM Journal on Computing. ,vol. 10, pp. 73- 87 ,(1981) , 10.1137/0210006
Herbert Edelsbrunner, Raimund Seidel, Voronoi diagrams and arrangements Discrete & Computational Geometry. ,vol. 1, pp. 25- 44 ,(1986) , 10.1007/BF02187681
F. Aurenhammer, R.L.S. Drysdale, H. Krasser, Farthest line segment Voronoi diagrams Information Processing Letters. ,vol. 100, pp. 220- 225 ,(2006) , 10.1016/J.IPL.2006.07.008