A randomized divide and conquer algorithm for higher-order abstract Voronoi diagrams

作者: Cecilia Bohler , Chih-Hung Liu , Evanthia Papadopoulou , Maksym Zavershynskyi

DOI: 10.1016/J.COMGEO.2016.08.004

关键词:

摘要: Given a set of n sites in the plane, their order-k Voronoi diagram partitions plane into regions such that all points within one region have same k nearest sites. The abstract offers unifying framework represents wide range concrete diagrams. It is defined terms bisecting curves satisfying some simple combinatorial properties, rather than geometric notions and distance.In this paper we develop randomized divide-and-conquer algorithm to compute expected O ( 1 + e ) operations. For solving small sub-instances process, also give two auxiliary algorithms with 2 log ź α time, respectively, where inverse Ackermann function. Our approach directly implies an -time for several instances as any convex distance, disjoint line segments or polygons constant size L p norms, others. provides basic techniques can enable application well-known random sampling construction diagrams setting non-point

参考文章(32)
Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evanthia Papadopoulou, Maksym Zavershynskyi, On the complexity of higher order abstract Voronoi diagrams Computational Geometry: Theory and Applications. ,vol. 48, pp. 539- 551 ,(2015) , 10.1016/J.COMGEO.2015.04.008
Chih-Hung Liu, Evanthia Papadopoulou, D. T. Lee, An output-sensitive approach for the L 1 /L ∞ k-nearest-neighbor Voronoi diagram european symposium on algorithms. pp. 70- 81 ,(2011) , 10.1007/978-3-642-23719-5_7
Elena Khramtcova, Evanthia Papadopoulou, None, Linear-Time Algorithms for the Farthest-Segment Voronoi Diagram and Related Tree Structures international symposium on algorithms and computation. pp. 404- 414 ,(2015) , 10.1007/978-3-662-48971-0_35
Andreas Gemsa, D. T. Lee, Chih-Hung Liu, Dorothea Wagner, Higher order city voronoi diagrams scandinavian workshop on algorithm theory. pp. 59- 70 ,(2012) , 10.1007/978-3-642-31155-0_6
Franz Aurenhammer, Voronoi diagrams—a survey of a fundamental geometric data structure ACM Computing Surveys. ,vol. 23, pp. 345- 405 ,(1991) , 10.1145/116873.116880
Rolf Klein, Kurt Mehlhorn, Stefan Meiser, Randomized incremental construction of abstract Voronoi diagrams Computational Geometry: Theory and Applications. ,vol. 3, pp. 157- 184 ,(1993) , 10.1016/0925-7721(93)90033-3
Jean -Daniel Boissonnat, Olivier Devillers, Monique Teillaud, A semidynamic construction of higher-order voronoi diagrams and its randomized analysis Algorithmica. ,vol. 9, pp. 329- 356 ,(1993) , 10.1007/BF01228508
Harald Rosenberger, Order-k voronoi diagrams of sites with additive weights in the plane Algorithmica. ,vol. 6, pp. 490- 521 ,(1991) , 10.1007/BF01759056
Maksym Zavershynskyi, Evanthia Papadopoulou, A Sweepline Algorithm for Higher Order Voronoi Diagrams international symposium on voronoi diagrams in science and engineering. pp. 16- 22 ,(2013) , 10.1109/ISVD.2013.17