Linear-Time Algorithms for the Farthest-Segment Voronoi Diagram and Related Tree Structures

作者: Elena Khramtcova , Evanthia Papadopoulou , None

DOI: 10.1007/978-3-662-48971-0_35

关键词:

摘要: We present linear-time algorithms to construct tree-like Voronoi diagrams with disconnected regions after the sequence of their faces along an enclosing boundary (or at infinity) is known. focus on farthest-segment diagram, however, our techniques are also applicable constructing order-\((k{+}1)\) subdivision within order-k region segments and updating a nearest-neighbor diagram deletion one site. Although tree-structured, these illustrate properties surprisingly different from counterparts for points. The relevant forms Davenport-Schinzel order \(\ge 2\). Once this known, we show how compute corresponding in linear time, expected or deterministic, augmenting existing frameworks points convex position ability handle non-point sites multiple faces.

参考文章(13)
Franz Aurenhammer, Der-Tsai Lee, Rolf Klein, Voronoi Diagrams and Delaunay Triangulations ,(2013)
Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evanthia Papadopoulou, Maksym Zavershynskyi, On the Complexity of Higher Order Abstract Voronoi Diagrams Automata, Languages, and Programming. pp. 208- 219 ,(2013) , 10.1007/978-3-642-39206-1_18
Rolf Klein, Andrzej Lingas, Hamiltonian Abstract Voronoi Diagrams in Linear Time international symposium on algorithms and computation. pp. 11- 19 ,(1994) , 10.1007/3-540-58325-4_161
Evanthia Papadopoulou, Maksym Zavershynskyi, The Higher-Order Voronoi Diagram of Line Segments Algorithmica. ,vol. 74, pp. 415- 439 ,(2016) , 10.1007/S00453-014-9950-0
F. Aurenhammer, R.L.S. Drysdale, H. Krasser, Farthest line segment Voronoi diagrams Information Processing Letters. ,vol. 100, pp. 220- 225 ,(2006) , 10.1016/J.IPL.2006.07.008
F. Chin, J. Snoeyink, C. A. Wang, Finding the Medial Axis of a Simple Polygon in Linear Time Discrete and Computational Geometry. ,vol. 21, pp. 405- 420 ,(1999) , 10.1007/PL00009429
Alok Aggarwal, Leonidas J. Guibas, James Saxe, Peter W. Shor, A linear-time algorithm for computing the voronoi diagram of a convex polygon Discrete & Computational Geometry. ,vol. 4, pp. 591- 604 ,(1989) , 10.1007/BF02187749
EVANTHIA PAPADOPOULOU, SANDEEP KUMAR DEY, ON THE FARTHEST LINE-SEGMENT VORONOI DIAGRAM International Journal of Computational Geometry and Applications. ,vol. 23, pp. 443- 459 ,(2013) , 10.1142/S0218195913600121
KURT MEHLHORN, STEFAN MEISER, RONALD RASCH, FURTHEST SITE ABSTRACT VORONOI DIAGRAMS International Journal of Computational Geometry and Applications. ,vol. 11, pp. 583- 616 ,(2001) , 10.1142/S0218195901000663