MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension

作者: Matteo Riondato , Fabio Vandin

DOI: 10.1145/3385653

关键词:

摘要: We present MiSoSouP, a suite of algorithms for extracting high-quality approximations of the most interesting subgroups, according to different popular interestingness measures, from a …

参考文章(17)
Sandy Moens, Mario Boley, Instant Exceptional Model Mining Using Weighted Controlled Pattern Sampling intelligent data analysis. ,vol. 8819, pp. 203- 214 ,(2014) , 10.1007/978-3-319-12571-8_18
Matthijs van Leeuwen, Arno Knobbe, Non-redundant Subgroup Discovery in Large and Complex Data Machine Learning and Knowledge Discovery in Databases. pp. 459- 474 ,(2011) , 10.1007/978-3-642-23808-6_30
Yi Li, Philip M. Long, Aravind Srinivasan, Improved Bounds on the Sample Complexity of Learning Journal of Computer and System Sciences. ,vol. 62, pp. 516- 527 ,(2001) , 10.1006/JCSS.2000.1741
Wouter Duivesteijn, Ad Feelders, Arno Knobbe, Different slopes for different folks Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '12. pp. 868- 876 ,(2012) , 10.1145/2339530.2339668
Franciso Herrera, Cristóbal José Carmona, Pedro González, María José del Jesus, An overview on subgroup discovery: foundations and applications Knowledge and Information Systems. ,vol. 29, pp. 495- 525 ,(2011) , 10.1007/S10115-010-0356-2
Matteo Riondato, Eli Upfal, Mining Frequent Itemsets through Progressive Sampling with Rademacher Averages knowledge discovery and data mining. pp. 1005- 1014 ,(2015) , 10.1145/2783258.2783265
V. Koltchinskii, Rademacher penalties and structural risk minimization IEEE Transactions on Information Theory. ,vol. 47, pp. 1902- 1914 ,(2001) , 10.1109/18.930926
Willi Klösgen, Problems for knowledge discovery in databases and their treatment in the statistics interpreter explora International Journal of Intelligent Systems. ,vol. 7, pp. 649- 673 ,(1992) , 10.1002/INT.4550070707
A. Terada, M. Okada-Hatakeyama, K. Tsuda, J. Sese, Statistical significance of combinatorial regulations Proceedings of the National Academy of Sciences of the United States of America. ,vol. 110, pp. 12996- 13001 ,(2013) , 10.1073/PNAS.1302233110
Martin Atzmueller, Subgroup discovery Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery. ,vol. 5, pp. 35- 49 ,(2015) , 10.1002/WIDM.1144