Analysis of ising model critical exponents from high temperature series expansion

作者: J. Zinn-Justin

DOI: 10.1051/JPHYS:019790040010096900

关键词:

摘要: High temperature series expansion for the critical exponents of Ising model are reanalysed using a modified ratio method. The analysis shows that minor modification method yields all lattices value, exponent γ in three dimensions, close to 1.245, therefore lower than quoted value 1.250, and much closer renormalization group (R.G.) 1.241. is analysed two ways : one estimated directly while other Tc, calculated first. With these new values α recalculated found be very R.G. 0.110. ν not (0.638) still problem hyperscaling, disagreement with (0.630).

参考文章(7)
J. C. Le Guillou, J. Zinn-Justin, Critical Exponents for the N Vector Model in Three-Dimensions from Field Theory Physical Review Letters. ,vol. 39, pp. 95- 98 ,(1977) , 10.1103/PHYSREVLETT.39.95
Kenneth G. Wilson, Michael E. Fisher, Critical Exponents in 3.99 Dimensions Physical Review Letters. ,vol. 28, pp. 240- 243 ,(1972) , 10.1103/PHYSREVLETT.28.240
George A. Baker, Bernie G. Nickel, Melville S. Green, Daniel I. Meiron, Ising Model Critical Indices in Three-Dimensions from the Callan-Symanzik Equation Physical Review Letters. ,vol. 36, pp. 1351- 1354 ,(1976) , 10.1103/PHYSREVLETT.36.1351
M. A. Moore, David Jasnow, Michael Wortis, Spin-Spin Correlation Function of the Three-Dimensional Ising Ferromagnet Above the Curie Temperature Physical Review Letters. ,vol. 22, pp. 940- 943 ,(1969) , 10.1103/PHYSREVLETT.22.940
Frank von Hippel, C. Quigg, Centrifugal-Barrier Effects in Resonance Partial Decay Widths, Shapes, and Production Amplitudes Physical Review D. ,vol. 5, pp. 624- 638 ,(1972) , 10.1103/PHYSREVD.5.624