Computation of Minkowski Values of Polynomials over Complex Sets

作者: Rida T. Farouki , Chang Yong Han

DOI: 10.1023/B:NUMA.0000027725.80448.D8

关键词:

摘要: As a generalization of Minkowski sums, products, powers, and roots complex sets, we consider the value given polynomial P over set X. Given any P(z) with prescribed coefficients in variable z, P(X) is defined to be all values generated by evaluating P, through specific algorithm, such manner that each instance z this algorithm varies independently The specification particular necessary, since sums products do not obey distributive law, hence different algorithms yield sets P(X). When degree n X circular disk plane study, as canonical cases, monomial value P m (X), for which terms are evaluated separately (incurring $$ \frac{1}{2} $$ n(n+1) independent z) summed; factor f where represented product (z−r 1)⋅⋅⋅(z−r n ) linear factors – incurring an choice z∈X r 1,...,r P(z); Horner h evaluation performed “nested multiplication” incurs z∈X. A new P when 0∉X, presented.

参考文章(14)
Rida T. Farouki, Helmut Pottmann, Exact Minkowski Products of N Complex Disks Reliable Computing. ,vol. 8, pp. 43- 66 ,(2002) , 10.1023/A:1014737602641
Manfred Hauenschild, EXTENDED CIRCULAR ARITHMETIC, PROBLEMS AND RESULTS Interval Mathematics 1980. pp. 367- 376 ,(1980) , 10.1016/B978-0-12-518850-0.50029-9
Rida T. Farouki, Jean–Claude A. Chastang, Curves and surfaces in geometrical optics Mathematical methods in computer aided geometric design II. pp. 239- 260 ,(1992) , 10.1016/B978-0-12-460510-7.50022-7
Rida T. Farouki, Hwan Pyo Moon, Bahram Ravani, Algorithms for Minkowski products and implicitly‐defined complex sets Advances in Computational Mathematics. ,vol. 13, pp. 199- 229 ,(2000) , 10.1023/A:1018910412112
M. Hauenschild, Arithmetiken für komplexe Kreise Computing. ,vol. 13, pp. 299- 312 ,(1974) , 10.1007/BF02241722
Ljiljana D Petković, Miodrag Petković, Complex Interval Arithmetic and Its Applications ,(1998)
John W. Rutter, Geometry of curves ,(2000)
Irene Gargantini, Peter Henrici, Circular arithmetic and the determination of polynomial zeros Numerische Mathematik. ,vol. 18, pp. 305- 320 ,(1971) , 10.1007/BF01404681