Minkowski Geometric Algebra and the Stability of Characteristic Polynomials

作者: Rida T. Farouki , Hwan Pyo Moon

DOI: 10.1007/978-3-662-05105-4_9

关键词:

摘要: A polynomial p is said to be Γ-stable if all its roots lie within a given domain Γ in the complex plane. The Γ-stability of an entire family polynomials, defined by selecting coefficients from specified sets, can verified (i) testing single member, and (ii) checking that “total value set” V * for along boundary ∂Γ does not contain 0 (V as set values each point on every possible choice coefficients). methods Minkowski geometric algebra —the sets plane — offer natural language stability analysis families polynomials. These are introduced, applied analyzing disk polynomials with selected circular disks In this context, may characterized union one-parameter disks, we show finite algorithm (a counterpart Kharitonov conditions rectangular coefficient sets) entails at most two real remain positive t, when curve γ(t).Furthermore, “robustness margin” determined computing polynomial.

参考文章(64)
Wolfgang Sienel, Reinhold Steinhauser, Dieter Kaesbauer, Andrew Bartlett, Jurgen Ackermann, Robust Control: Systems With Uncertain Physical Parameters ,(1993)
C. Soh, C. Berger, K. Dabke, On the stability properties of polynomials with perturbed coefficients IEEE Transactions on Automatic Control. ,vol. 30, pp. 1033- 1036 ,(1985) , 10.1109/TAC.1985.1103807
G. Alefeld, Jürgen Herzberger, J. Rokne, Introduction to Interval Computation ,(2016)
J. Rokne, H. Ratschek, Computer Methods for the Range of Functions ,(1984)
N.K. Bose, K.D. Kim, Stability of a complex polynomial set with coefficients in a diamond and generalizations IEEE Transactions on Circuits and Systems. ,vol. 36, pp. 1168- 1174 ,(1989) , 10.1109/31.34662
Harry Blum, Roger N. Nagel, Shape description using weighted symmetric axis features Pattern Recognition. ,vol. 10, pp. 167- 180 ,(1978) , 10.1016/0031-3203(78)90025-0
B. T. Polyak, P. S. Scherbakov, S. B. Shmulyian, Construction of value set for robustness analysis via circular arithmetic International Journal of Robust and Nonlinear Control. ,vol. 4, pp. 371- 385 ,(1994) , 10.1002/RNC.4590040305
V. L. Kharitonov, Asympotic stability of an equilibrium position of a family of systems of linear differntial equations Differntia Uravnen. ,vol. 14, pp. 1483- 1485 ,(1978)
ANIL KAUL, RIDA T. FAROUKI, COMPUTING MINKOWSKI SUMS OF PLANE CURVES International Journal of Computational Geometry and Applications. ,vol. 05, pp. 413- 432 ,(1995) , 10.1142/S0218195995000258