Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites

作者: M. Balcerzak , J. Jakubowicz , T. Kachlicki , M. Jurczyk

DOI: 10.1016/J.JPOWSOUR.2015.01.135

关键词:

摘要: Abstract Mechanical alloying and annealing at 1023 K for 0.5 h under an argon atmosphere were used to prepare Ti 2 Ni-based nanocrystalline alloys their nanocomposites. Ni alloy was chemically modified by Pd multi-walled carbon nanotubes. An objective of the present study is provide data on hydrogenation properties compounds containing and/or Alloys composites characterized X-ray diffraction, scanning electron microscopy equipped with energy dispersive spectrometer, transmission microscopy, atomic force evaluate phase composition, crystal structure, grain size, particle morphology distribution catalyst element. Hydrogenation/dehydrogenation hydriding kinetics materials measured using a Sievert's apparatus. Hydrogenation nanostructured nanocomposites compared those binary compound. In work we shown how mechanical method chemical modification MWCNTs affected hydrogen storage alloy. The highest capacity obtained Ni + Pd equaled 2.1 wt.%. Up our knowledge it so far materials.

参考文章(47)
B Luan, HK Liu, SX Dou, None, On the elemental substitutions of titanium-based hydrogen-storage alloy electrodes for rechargeable Ni–MH batteries Journal of Materials Science. ,vol. 32, pp. 2629- 2635 ,(1997) , 10.1023/A:1018614820507
Xiangyu Zhao, Liqun Ma, Meng Yang, Yi Ding, Xiaodong Shen, Electrochemical properties of Ti―Ni―H powders prepared by milling titanium hydride and nickel International Journal of Hydrogen Energy. ,vol. 35, pp. 3076- 3079 ,(2010) , 10.1016/J.IJHYDENE.2009.07.017
M. Balcerzak, M. Nowak, J. Jakubowicz, M. Jurczyk, Electrochemical behavior of nanocrystalline TiNi doped by MWCNTs and Pd Renewable Energy. ,vol. 62, pp. 432- 438 ,(2014) , 10.1016/J.RENENE.2013.07.031
Sima Aminorroaya, Hua Kun Liu, Younghee Cho, Arne Dahle, Microstructure and activation characteristics of Mg–Ni alloy modified by multi-walled carbon nanotubes International Journal of Hydrogen Energy. ,vol. 35, pp. 4144- 4153 ,(2010) , 10.1016/J.IJHYDENE.2010.02.078
S. Romankov, W. Sha, S.D. Kaloshkin, K. Kaevitser, Fabrication of Ti–Al coatings by mechanical alloying method Surface & Coatings Technology. ,vol. 201, pp. 3235- 3245 ,(2006) , 10.1016/J.SURFCOAT.2006.06.044
Jing Lin, Fei Liang, Yaoming Wu, Wanqiang Liu, Limin Wang, Hydrogen storage properties of Ti1.4V0.6Ni + x Mg (x = 1–3, wt.%) alloys International Journal of Hydrogen Energy. ,vol. 39, pp. 3313- 3319 ,(2014) , 10.1016/J.IJHYDENE.2013.12.059
Asheesh Kumar, K Shashikala, Seemita Banerjee, J Nuwad, Priyanka Das, CGS Pillai, None, Effect of cycling on hydrogen storage properties of Ti2CrV alloy International Journal of Hydrogen Energy. ,vol. 37, pp. 3677- 3682 ,(2012) , 10.1016/J.IJHYDENE.2011.04.135
Meng Yang, Xiangyu Zhao, Yi Ding, Liqun Ma, Xinxin Qu, Yujun Gao, Electrochemical properties of titanium-based hydrogen storage alloy prepared by solid phase sintering International Journal of Hydrogen Energy. ,vol. 35, pp. 2717- 2721 ,(2010) , 10.1016/J.IJHYDENE.2009.04.045
I Zavaliy, G Wojcik, G Mlynarek, I Saldan, V Yartys, M Kopczyk, Phase-structural characteristics of (Ti1−xZrx)4Ni2O0.3 alloys and their hydrogen gas and electrochemical absorption–desorption properties Journal of Alloys and Compounds. ,vol. 314, pp. 124- 131 ,(2001) , 10.1016/S0925-8388(00)01232-9