Utilizing Geometric Anomalies of High Dimension: When Complexity Makes Computation Easier

作者: Paul C. Kainen

DOI: 10.1007/978-1-4612-1996-5_18

关键词:

摘要: Just as a busy kitchen can be more efficient than an idle one, Kleinrock showed 35 years ago that heavily used networks admit simple heuristic approximations with excellent quantitative accuracy. We describe number of different examples in which having many parameters actually facilitates computation and we suggest connections geometric phenomena high-dimensional spaces. It seems several interesting quite general situations, dimensionality may blessing disguise provided some suitable form computing is deal it.

参考文章(16)
Richard W. Hamming, Coding and Information Theory ,(1980)
L. I. Golovina, I. M. Iaglom, Leonid Levant, Induction in geometry ,(1963)
T. J. Sejnowski, Parallel networks that learn to pronounce English text Complex Systems. ,vol. 1, pp. 145- 168 ,(1987)
M. Desmurget, C. Prablanc, Y. Rossetti, M. Arzi, Y. Paulignan, C. Urquizar, J. C. Mignot, Postural and Synergic Control for Three-Dimensional Movements of Reaching and Grasping Journal of Neurophysiology. ,vol. 74, pp. 905- 910 ,(1995) , 10.1152/JN.1995.74.2.905
Sally Floyd, Richard M. Karp, FFD bin packing for item sizes with uniform distributions on [0, 1/2] Algorithmica. ,vol. 6, pp. 222- 240 ,(1991) , 10.1007/BF01759043
J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, L. A. McGeoch, Some unexpected expected behavior results for bin packing symposium on the theory of computing. pp. 279- 288 ,(1984) , 10.1145/800057.808692
David M. Lazoff, Alan T. Sherman, Expected Wire Length between Two Randomly Chosen Terminals SIAM Review. ,vol. 37, pp. 235- 235 ,(1995) , 10.1137/1037047
E. Bannai, N. J. A. Sloane, J. H. Conway, Sphere packings, lattices, and groups ,(1987)
Paul C. Kainen, Vĕra Kůrková, Quasiorthogonal dimension of euclidean spaces Applied Mathematics Letters. ,vol. 6, pp. 7- 10 ,(1993) , 10.1016/0893-9659(93)90023-G