Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals

作者: G. Rienäcker , M. Kröger , S. Hess

DOI: 10.1016/S0378-4371(02)01008-7

关键词:

摘要: Abstract Based on a relaxation equation for the alignment tensor characterizing molecular orientation in liquid crystals under flow we present results full orientational dynamics of homogeneous shear flow. We extend analysis symmetry-adapted states by Rienacker and Hess (Physica A 267 (1999) 294), which invoke only 3 5 components to alignment. The steady transient reduced model are preserved this more general description, except log-rolling, turns out be unstable range parameters considered. However, reported earlier stable within certain there is variety new, symmetry-breaking with director plane, partially coexist in-plane states. out-of-plane can divided two classes: simple periodic complex orbits. first class consists kayaking-tumbling kayaking-wagging state, where projection onto plane describes tumbling or wagging motion, respectively. second states, found small parameter range, either complicated irregular, chaotic Both an intermittency route period-doubling chaos found. link corresponding rheological properties made.

参考文章(51)
Peter Plaschko, Klaus Brod, Deterministisches Chaos — Eine Einführung Springer Berlin Heidelberg. pp. 359- 424 ,(1989) , 10.1007/978-3-642-83621-3_13
Stephen Wolfram, The Mathematica book (4th edition) The Mathematica book (4th edition). pp. 1470- 1470 ,(1999)
Gerald G. Fuller, Optical Rheometry of Complex Fluids ,(1995)
A. Ajdari, M. E. Cates, D. A. Head, Rheochaos in a Scalar Shear-Thickening Model ,(2002)
Iliya V. Karlin, Hans Christian Öttinger, Martin Kröger, Martin Kröger, Patrick Ilg, Canonical distribution functions in polymer dynamics. (II). Liquid-crystalline polymers Physica A-statistical Mechanics and Its Applications. ,vol. 319, pp. 134- 150 ,(2003) , 10.1016/S0378-4371(02)01393-6
G. Marrucci, F. Greco, The Elastic Constants of Maier-Saupe Rodlike Molecule Nematics Molecular Crystals and Liquid Crystals. ,vol. 206, pp. 17- 30 ,(1991) , 10.1080/00268949108037714
W. Muschik, B. Su, Mesoscopic interpretation of Fokker-Planck equation describing time behavior of liquid crystal orientation Journal of Chemical Physics. ,vol. 107, pp. 580- 584 ,(1997) , 10.1063/1.474418
D R J Chillingworth, E Vicente Alonso, A A Wheeler, Geometry and dynamics of a nematic liquid crystal in a uniform shear flow Journal of Physics A: Mathematical and General. ,vol. 34, pp. 1393- 1404 ,(2001) , 10.1088/0305-4470/34/7/312
Andrew J. Szeri, A deformation tensor model of liquid crystalline polymers Journal of Rheology. ,vol. 39, pp. 873- 891 ,(1995) , 10.1122/1.550717