Controlling eye movements with hidden Markov models

作者: Raymond D. Rimey , Christopher M. Brown

DOI: 10.1007/BF00130489

关键词:

摘要: Advances in technology and active vision research allow encourage sequential visual information acquisition. Hidden Markov models (HMMs) can represent probabilistic sequences graph structures: here we explore their use controlling the acquisition of information. We include a brief tutorial with two examples: (1) input to derive an aspect (2) similarly finite state machine for control processing.

参考文章(34)
Shimon Ullman, Visual routines Image understanding 1985-86. pp. 286- 344 ,(1987)
Christopher M Brown, Dana H Ballard, Timothy Becker, Roger Gans, Nathaniel Martin, TJ Olson, Robert Potter, Raymond Rimey, David Tilley, Steven Whitehead, The Rochester Robot Defense Technical Information Center. ,(1988) , 10.21236/ADA202633
Steven D. Whitehead, Dana H. Ballard, Active perception and reinforcement learning international conference on machine learning. pp. 179- 188 ,(1990) , 10.1016/B978-1-55860-141-3.50025-0
Lawrence Stark, David Noton, Eye movements and visual perception. Scientific American. ,vol. 224, pp. 35- 43 ,(1971)
A. G. Barto, R. S. Sutton, C. J.C.H. Watkins, Learning and Sequential Decision Making University of Massachusetts. ,(1989)
Y. He, A. Kundu, Planar shape classification using hidden Markov model computer vision and pattern recognition. pp. 10- 15 ,(1991) , 10.1109/CVPR.1991.139653
Michael C. Mozer, Jonathan Bachrach, Discovering the Structure of a Reactive Environment by Exploration neural information processing systems. ,vol. 2, pp. 439- 446 ,(1989) , 10.1162/NECO.1990.2.4.447
J. J. Koenderink, A. J. van Doorn, The internal representation of solid shape with respect to vision Biological Cybernetics. ,vol. 32, pp. 211- 216 ,(1979) , 10.1007/BF00337644
Stanley J. Rosenschein, Formal theories of knowledge in AI and robotics New Generation Computing. ,vol. 3, pp. 345- 357 ,(1986) , 10.1007/BF03037076
Thomas Dean, Keiji Kanazawa, A model for reasoning about persistence and causation computational intelligence. ,vol. 5, pp. 142- 150 ,(1989) , 10.1111/J.1467-8640.1989.TB00324.X