Thomas rotation and Thomas precession

作者: Máté Matolcsi , Tamás Matolcsi

DOI: 10.1007/S10773-005-1437-Y

关键词:

摘要: Exact and simple calculation of Thomas rotation precessions along a circular world line is presented in an absolute (coordinate-free) formulation special relativity. A straightforward derivation the Fermi–Walker equation also given. Besides simplicity calculations treatment spacetime allows us to make clear conceptual distinction between phenomena precession.

参考文章(19)
Luis Herrera, Alicia Di Prisco, The Thomas precession and the transformation to rotating frames Journal of Genetic Counseling. ,vol. 15, pp. 373- 383 ,(2014) , 10.1023/A:1021268628566
Krzysztof Rębilas, Comment on “The Thomas rotation,” by John P. Costella et al. [Am. J. Phys. 69 (8), 837–847 (2001)] American Journal of Physics. ,vol. 70, pp. 1163- 1165 ,(2002) , 10.1119/1.1507788
Péter Lévay, Thomas rotation and the mixed state geometric phase Journal of Physics A. ,vol. 37, pp. 4593- 4605 ,(2004) , 10.1088/0305-4470/37/16/009
T. Matolcsi, A. Goher, Spacetime without Reference Frames: An Application to the Velocity Addition Paradox Studies in History and Philosophy of Modern Physics. ,vol. 32, pp. 83- 99 ,(2001) , 10.1016/S1355-2198(00)00037-X
R. J. Philpott, Thomas precession and the Liénard–Wiechert field American Journal of Physics. ,vol. 64, pp. 552- 556 ,(1996) , 10.1119/1.18153
D. A. Jones, J. W. Mitchell, Observations on helical dislocations in crystals of silver chloride Philosophical Magazine. ,vol. 3, pp. 1- 7 ,(1958) , 10.1080/14786435808243219
W L Kennedy, Thomas rotation: a Lorentz matrix approach European Journal of Physics. ,vol. 23, pp. 235- 247 ,(2002) , 10.1088/0143-0807/23/3/301
Abraham A. Ungar, The relativistic velocity composition paradox and the Thomas rotation Foundations of Physics. ,vol. 19, pp. 1385- 1396 ,(1989) , 10.1007/BF00732759