Use of an Automated Quantitative Analysis of Hippocampal Volume, Signal, and Glucose Metabolism to Detect Hippocampal Sclerosis.

作者: Wen-han Hu , Li-na Liu , Bao-tian Zhao , Xiu Wang , Chao Zhang

DOI: 10.3389/FNEUR.2018.00820

关键词:

摘要: Purpose: Magnetic resonance imaging (MRI) and positron emission tomography (PET) with 18F-fluorodeoxyglucose (18FDG) are valuable tools for evaluating hippocampal sclerosis (HS); however, bias may arise during visual analyses. The aim of this study was to evaluate compare MRI PET post-processing techniques, automated quantitative volume (Q-volume), fluid-attenuated inversion-recovery (FLAIR) signal (Q-FLAIR) glucose metabolism (Q-PET) analyses in patients HS. Methods: We collected 18FDG-PET images from 54 HS 22 healthy controls independently performed conventional (CVA) (CVA-PET) (CVA-MRI) images. During the subsequent analyses, hippocampus segmented 3D T1 image, mean volumetric, FLAIR intensity standardized uptake value ratio (SUVR) values left right were assessed each subject. Threshold confidence levels calculated SUVR used identify subjects or performance three methods using receiver operating characteristic (ROC) curves, detection rates CVA-MRI, CVA-PET, Q-volume, Q-FLAIR, Q-PET statistically compared. Results: areas under curves (AUCs) ROC 0.88, 0.41, 0.98, which suggested a diagnostic method moderate, poor, high accuracy, respectively. Although had highest rate among two CVA methods, difference between Q-volume did not reach statistical significance. Regarding subtypes, similar type 1 HS, most sensitive detecting types 2 3 Conclusions: In that have been visually by experts, quantification can increase appear be additional epilepsy who suspected having

参考文章(25)
Dorian Pustina, Brian Avants, Michael Sperling, Richard Gorniak, Xiaosong He, Gaelle Doucet, Paul Barnett, Scott Mintzer, Ashwini Sharan, Joseph Tracy, Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: A multimodal study NeuroImage: Clinical. ,vol. 9, pp. 20- 31 ,(2015) , 10.1016/J.NICL.2015.07.010
Wen-Han Hu, Chao Zhang, Kai Zhang, Fan-Gang Meng, Ning Chen, Jian-Guo Zhang, Selective amygdalohippocampectomy versus anterior temporal lobectomy in the management of mesial temporal lobe epilepsy: a meta-analysis of comparative studies. Journal of Neurosurgery. ,vol. 119, pp. 1089- 1097 ,(2013) , 10.3171/2013.8.JNS121854
Marie Chupin, A. Romain Mukuna-Bantumbakulu, Dominique Hasboun, Eric Bardinet, Sylvain Baillet, Serge Kinkingnéhun, Louis Lemieux, Bruno Dubois, Line Garnero, Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer's disease. NeuroImage. ,vol. 34, pp. 996- 1019 ,(2007) , 10.1016/J.NEUROIMAGE.2006.10.035
Laura Mumoli, Angelo Labate, Roberta Vasta, Andrea Cherubini, Edoardo Ferlazzo, Umberto Aguglia, Aldo Quattrone, Antonio Gambardella, Detection of hippocampal atrophy in patients with temporal lobe epilepsy: a 3-Tesla MRI shape. Epilepsy & Behavior. ,vol. 28, pp. 489- 493 ,(2013) , 10.1016/J.YEBEH.2013.05.035
F. Chassoux, S. Rodrigo, F. Semah, F. Beuvon, E. Landre, B. Devaux, B. Turak, C. Mellerio, J.- F. Meder, F.- X. Roux, C. Daumas-Duport, P. Merlet, O. Dulac, C. Chiron, FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias Neurology. ,vol. 75, pp. 2168- 2175 ,(2010) , 10.1212/WNL.0B013E31820203A9
Bruce Fischl, David H. Salat, Evelina Busa, Marilyn Albert, Megan Dieterich, Christian Haselgrove, Andre van der Kouwe, Ron Killiany, David Kennedy, Shuna Klaveness, Albert Montillo, Nikos Makris, Bruce Rosen, Anders M. Dale, Whole Brain Segmentation Neuron. ,vol. 33, pp. 341- 355 ,(2002) , 10.1016/S0896-6273(02)00569-X
Hans-Jürgen Huppertz, Jan Wagner, Bernd Weber, Patrick House, Horst Urbach, Automated quantitative FLAIR analysis in hippocampal sclerosis Epilepsy Research. ,vol. 97, pp. 146- 156 ,(2011) , 10.1016/J.EPLEPSYRES.2011.08.001
Heath R. Pardoe, Gaby S. Pell, David F. Abbott, Graeme D. Jackson, Hippocampal volume assessment in temporal lobe epilepsy: How good is automated segmentation? Epilepsia. ,vol. 50, pp. 2586- 2592 ,(2009) , 10.1111/J.1528-1167.2009.02243.X
W Van Paesschen, S Sisodiya, A Connelly, JS Duncan, SL Free, AA Raymond, RA Grunewald, T Revesz, SD Shorvon, DR Fish, JM Stevens, Johnson CL, F Scaravilli, Harkness WFJ FRCS, GD Jackson, None, Quantitative hippocampal MRI and intractable temporal lobe epilepsy Neurology. ,vol. 45, pp. 2233- 2240 ,(1995) , 10.1212/WNL.45.12.2233
R Coras, I Bluemcke, M Thom, E Aronica, D Armstrong, F Bartolomei, A Bernasconi, N Bernasconi, CG Bien, F Cendes, HJ Cross, TS Jacques, P Kahane, MW Gary, H Miyata, SL Moshe, B Oz, C Ozkara, E Perucca, S Sisodiya, S Wiebe, R Spreafico, None, International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods Epilepsia. ,vol. 54, pp. 1315- 1329 ,(2013) , 10.1111/EPI.12220