Impact of Li doping on the microstructure, defects, and physical properties of CuFeO2 multiferroic ceramics

作者: Haiyang Dai , Fengjiao Ye , Tao Li , Zhenping Chen , Xingzhong Cao

DOI: 10.1016/J.CERAMINT.2019.08.186

关键词:

摘要: Abstract An investigation on the microstructure, defects, and physical properties for Cu1-xLixFeO2 (x = 0.00–0.08) ceramic samples is here presented. The delafossite structure with R 3 ‾ m space group all retrieved using Powder X, whereas grain growth can be effectively inhibited by Li doping. Positron annihilation results demonstrate that vacancies are formed in specimens, defect size concentration affected Electric measurements show prepared exhibit giant dielectric behavior, while undoped CuFeO2 sample exhibits maximum value around 3.5 × 104. internal barrier capacitance model (IBLC) used to systematically explain mechanism of system. Optical analysis shows an obvious absorption peak occurs at 225 nm, a decrease direct optical band gap increase doping content observed. Magnetic reveal antiferromagnetic transition temperature has almost no change content, co-existence ferromagnetism antiferromagnetism magnetization increases amount, which x = 0.08 (about 24 emu/g). evolution magnetic seen related lattice distortion, vacancy defect, disturbance spin induced

参考文章(51)
T. Kimura, J. C. Lashley, A. P. Ramirez, Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnetCuFeO2 Physical Review B. ,vol. 73, pp. 220401- ,(2006) , 10.1103/PHYSREVB.73.220401
Setsuo Mitsuda, Hideki Yoshizawa, Nariyasu Yaguchi, Mamoru Mekata, Neutron Diffraction Study of CuFeO2 Journal of the Physical Society of Japan. ,vol. 60, pp. 1885- 1889 ,(1991) , 10.1143/JPSJ.60.1885
O A Petrenko, M R Lees, G Balakrishnan, S de Brion, G Chouteau, Revised magnetic properties of CuFeO2- : a case of mistaken identity Journal of Physics: Condensed Matter. ,vol. 17, pp. 2741- 2747 ,(2005) , 10.1088/0953-8984/17/17/023
Lerdkead Naka-in, Teerasak Kamwanna, Pornjuk Srepusharawoot, Supree Pinitsoontorn, Vittaya Amornkitbamrung, Effects of Ge substitution on the structural and physical properties of CuFeO2 delafossite oxide Japanese Journal of Applied Physics. ,vol. 54, ,(2015) , 10.7567/JJAP.54.04DH10
T. Elkhouni, C. V. Colin, P. Strobel, A. Ben Salah, M. Amami, Effect of Ga Substitution on the Magnetic State of Delafossite CuCrO2 with Antiferromagnetic Triangular Sublattice Journal of Superconductivity and Novel Magnetism. ,vol. 26, pp. 2125- 2134 ,(2013) , 10.1007/S10948-012-1807-7
G. Quirion, M. J. Tagore, M. L. Plumer, O. A. Petrenko, Evidence of soft modes in magnetoelectric CuFeO2: Ultrasonic velocity measurements and Landau theory Physical Review B. ,vol. 77, pp. 094111- ,(2008) , 10.1103/PHYSREVB.77.094111
T. Elkhouni, M. Amami, C.V. Colin, A. Ben Salah, Structural and magnetoelectric interactions of (Ca, Mg)-doped polycrystalline multiferroic CuFeO2 Materials Research Bulletin. ,vol. 53, pp. 151- 157 ,(2014) , 10.1016/J.MATERRESBULL.2014.01.035
F. Ye, Y. Ren, Q. Huang, J. A. Fernandez-Baca, Pengcheng Dai, J. W. Lynn, T. Kimura, Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2 Physical Review B. ,vol. 73, pp. 220404- ,(2006) , 10.1103/PHYSREVB.73.220404
F. Ye, J. A. Fernandez-Baca, R. S. Fishman, Y. Ren, H. J. Kang, Y. Qiu, T. Kimura, Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO2 Physical Review Letters. ,vol. 99, pp. 157201- ,(2007) , 10.1103/PHYSREVLETT.99.157201
Tao Li, Jing Chen, Dewei Liu, Zhixia Zhang, Zhenping Chen, Zhuoxin Li, Xingzhong Cao, Baoyi Wang, Effect of NiO-doping on the microstructure and the dielectric properties of CaCu3Ti4O12 ceramics Ceramics International. ,vol. 40, pp. 9061- 9067 ,(2014) , 10.1016/J.CERAMINT.2014.01.119