A variational approach to superfluidity

作者: R. H. Critchley , A. I. Solomon

DOI: 10.1007/BF01030201

关键词:

摘要: A variational approach to problems in quantum statistical mechanics is described and it shown how determine the best quasi-free approximation equilibrium state. The relation between this Bogoliubov superfluidity discussed.

参考文章(17)
N. Fukuda, The Many-body Problem ,(1971)
M. Fannes, The entropy density of quasi free states Communications in Mathematical Physics. ,vol. 31, pp. 279- 290 ,(1973) , 10.1007/BF01646489
John T. Cannon, Infinite volume limits of the canonical free Bose gas states on the Weyl algebra Communications in Mathematical Physics. ,vol. 29, pp. 89- 104 ,(1973) , 10.1007/BF01645656
M. Girardeau, R. Arnowitt, THEORY OF MANY-BOSON SYSTEMS: PAIR THEORY Physical Review. ,vol. 113, pp. 755- 761 ,(1959) , 10.1103/PHYSREV.113.755
E. B. Davies, The thermodynamic limit for an imperfect Boson gas Communications in Mathematical Physics. ,vol. 28, pp. 69- 86 ,(1972) , 10.1007/BF02099372
J. T. Lewis, J. V. Pulè, The equilibrium states of the free Boson gas Communications in Mathematical Physics. ,vol. 36, pp. 1- 18 ,(1974) , 10.1007/BF01646022
J. G. Valatin, D. Butler, On the collective properties of a boson system Il Nuovo Cimento. ,vol. 10, pp. 37- 54 ,(1958) , 10.1007/BF02859603
Derek W. Robinson, A theorem concerning the positive metric Communications in Mathematical Physics. ,vol. 1, pp. 89- 94 ,(1965) , 10.1007/BF01649592
J. Ginibre, On the asymptotic exactness of the Bogoliubov approximation for many boson systems Communications in Mathematical Physics. ,vol. 8, pp. 26- 51 ,(1968) , 10.1007/BF01646422
H. Araki, E. J. Woods, Representations of the Canonical Commutation Relations Describing a Nonrelativistic Infinite Free Bose Gas Journal of Mathematical Physics. ,vol. 4, pp. 637- 662 ,(1963) , 10.1063/1.1704002