DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification

作者: F. Ferre , P. Clote

DOI: 10.1093/NAR/GKL189

关键词:

摘要: DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the 10 cysteine oxidation state disulfide connectivity of protein, given only its amino acid sequence. Version 1.0 uses feed-forward to determine cysteines are involved in bond, employs novel architec15 ture predict half-cystines covalently bound other half-cystines. In version 1.1 DiANNA, described here, we extend functionality by applying support vector machine with spectrum kernel for clas20 sification problem—to whether reduced (free sulfhydryl state), halfcystine (involved bond) or metallic ligand. latter case, predicts ligand among iron, zinc, cadmium carbon. 25 Available at: http://bioinformatics.bc.edu/clotelab/ DiANNA/.

参考文章(19)
RUI KUANG, EUGENE IE, KE WANG, KAI WANG, MAHIRA SIDDIQI, YOAV FREUND, CHRISTINA LESLIE, Profile-based string kernels for remote homology detection and motif extraction. Journal of Bioinformatics and Computational Biology. ,vol. 3, pp. 527- 550 ,(2005) , 10.1142/S021972000500120X
CHRISTINA LESLIE, ELEAZAR ESKIN, WILLIAM STAFFORD NOBLE, The spectrum kernel: a string kernel for SVM protein classification. pacific symposium on biocomputing. pp. 564- 575 ,(2001) , 10.1142/9789812799623_0053
Helen M. Berman, Tammy Battistuz, T. N. Bhat, Wolfgang F. Bluhm, Philip E. Bourne, Kyle Burkhardt, Zukang Feng, Gary L. Gilliland, Lisa Iype, Shri Jain, Phoebe Fagan, Jessica Marvin, David Padilla, Veerasamy Ravichandran, Bohdan Schneider, Narmada Thanki, Helge Weissig, John D. Westbrook, Christine Zardecki, The Protein Data Bank. Acta Crystallographica Section D-biological Crystallography. ,vol. 58, pp. 899- 907 ,(2002) , 10.1107/S0907444902003451
F. Ferre, P. Clote, DiANNA: a web server for disulfide connectivity prediction Nucleic Acids Research. ,vol. 33, pp. 230- 232 ,(2005) , 10.1093/NAR/GKI412
Michael Gribskov, Nina L. Robinson, Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching Computational Biology and Chemistry. ,vol. 20, pp. 25- 33 ,(1996) , 10.1016/S0097-8485(96)80004-0
Pier Luigi Martelli, Piero Fariselli, Luca Malaguti, Rita Casadio, Prediction of the disulfide bonding state of cysteines in proteins with hidden neural networks. Protein Engineering. ,vol. 15, pp. 951- 953 ,(2002) , 10.1093/PROTEIN/15.12.951
A. Zien, G. Ratsch, S. Mika, B. Scholkopf, T. Lengauer, K.-R. Muller, Engineering support vector machine kernels that recognize translation initiation sites german conference on bioinformatics. ,vol. 16, pp. 799- 807 ,(2000) , 10.1093/BIOINFORMATICS/16.9.799
A. Narayanan, X. Wu, Z. R. Yang, Mining viral protease data to extract cleavage knowledge intelligent systems in molecular biology. ,vol. 18, pp. 5- 13 ,(2002) , 10.1093/BIOINFORMATICS/18.SUPPL_1.S5
Gordon J. Pace, Steven Busuttil, John Abela, Support vector machines with profile-based kernels for remote protein homology detection. Genome Informatics. ,vol. 15, pp. 191- 200 ,(2004) , 10.11234/GI1990.15.2_191