A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction

作者: Shiwei Yu , Kejun Zhu , Fengqin Diao

DOI: 10.1016/J.AMC.2007.04.088

关键词:

摘要: … To dynamic and adaptive optimize all parameters of BP neural networks by a hybrid algorithm of GA–SA–BP; first of all, design as following must be done in this section. …

参考文章(29)
Li Zhang, Ganesh Subbarayan, An evaluation of back-propagation neural networks for the optimal design of structural systems: Part I. Training procedures Computer Methods in Applied Mechanics and Engineering. ,vol. 191, pp. 2873- 2886 ,(2002) , 10.1016/S0045-7825(01)00372-3
Sandy D. Balkin, J.Keith Ord, Automatic neural network modeling for univariate time series International Journal of Forecasting. ,vol. 16, pp. 509- 515 ,(2000) , 10.1016/S0169-2070(00)00072-8
M. Srinivas, L.M. Patnaik, Adaptive probabilities of crossover and mutation in genetic algorithms systems man and cybernetics. ,vol. 24, pp. 656- 667 ,(1994) , 10.1109/21.286385
R.S. Balch, B.S. Stubbs, W.W. Weiss, S. Wo, Using Artificial Intelligence to Corellate Multiple Seismic Attributes to Reservoir Properties SPE Annual Technical Conference and Exhibition. pp. 553- 566 ,(1999) , 10.2118/56733-MS
Harri Niska, Teri Hiltunen, Ari Karppinen, Juhani Ruuskanen, Mikko Kolehmainen, Evolving the neural network model for forecasting air pollution time series Engineering Applications of Artificial Intelligence. ,vol. 17, pp. 159- 167 ,(2004) , 10.1016/J.ENGAPPAI.2004.02.002
S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated Annealing Science. ,vol. 220, pp. 671- 680 ,(1983) , 10.1126/SCIENCE.220.4598.671
O. Tapias, C.P. Soto, J. Sandoval, H.H. Perez, A. Bejarano, Reservoir Engineer and Artificial Intelligence Techniques for Data Analysis SPE Asia Pacific Oil and Gas Conference and Exhibition. ,(2001) , 10.2118/68743-MS
Tsuyoshi Satake, Katsumi Morikawa, Nobuto Nakamura, Neural network approach for minimizing the makespan of the general job-shop International Journal of Production Economics. ,vol. 33, pp. 67- 74 ,(1994) , 10.1016/0925-5273(94)90119-8