Quantum Cohomology and Crepant Resolutions: A Conjecture

作者: Tom Coates , Yongbin Ruan

DOI: 10.5802/AIF.2766

关键词:

摘要: We give an expository account of a conjecture, developed by Coates--Corti--Iritani--Tseng and Ruan, which relates the quantum cohomology Gorenstein orbifold X to crepant resolution Y X. explore some consequences this showing that it implies versions both Cohomological Crepant Resolution Conjecture Conjectures Ruan Bryan--Graber. also "quantized" version determines higher-genus Gromov--Witten invariants from those Y.

参考文章(20)
Edward Witten, Quantum Background Independence In String Theory arXiv: High Energy Physics - Theory. ,(1993)
Carel Faber, Sergey Shadrin, Dimitri Zvonkine, Tautological relations and the $r$-spin Witten conjecture Annales scientifiques de l'École normale supérieure. ,vol. 43, pp. 621- 658 ,(2010) , 10.24033/ASENS.2130
Fabio Perroni, Orbifold Cohomology of ADE-singularities arXiv: Algebraic Geometry. ,(2005)
Jim Bryan, Tom Graver, The Crepant Resolution Conjecture arXiv: Algebraic Geometry. ,(2009)
David A. Cox, Sheldon Katz, Mirror symmetry and algebraic geometry ,(1999)
Ron Donagi, Boris Dubrovin, Edward Frenkel, Emma Previato, Boris Dubrovin, Geometry of 2D topological field theories Lecture Notes in Mathematics. ,vol. 1620, pp. 120- 348 ,(1996) , 10.1007/BFB0094793
JianZhong Pan, YongBin Ruan, XiaoQin Yin, Gerbes and twisted orbifold quantum cohomology Science China-mathematics. ,vol. 51, pp. 995- 1016 ,(2008) , 10.1007/S11425-007-0154-9
Tom Coates, Givental’s Lagrangian Cone and $S^1$-Equivariant Gromov–Witten Theory Mathematical Research Letters. ,vol. 15, pp. 15- 31 ,(2008) , 10.4310/MRL.2008.V15.N1.A2
Paul S. Aspinwall, Brian R. Greene, David R. Morrison, Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory Nuclear Physics. ,vol. 416, pp. 414- 480 ,(1994) , 10.1016/0550-3213(94)90321-2
Yuri Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces Colloquium Publications. ,vol. 47, ,(1999) , 10.1090/COLL/047