Ablation effects on weakly nonlinear Rayleigh-Taylor instability with a finite bandwidth.

作者: Tadashi Ikegawa , Katsunobu Nishihara

DOI: 10.1103/PHYSREVLETT.89.115001

关键词:

摘要: A weakly nonlinear but numerically tractable model (to third order in amplitude and including bandwidth effects) has been developed for the ablative Rayleigh-Taylor (RT) instability. Model results clearly show growth reduction from linear RT values even saturation some realistic cases. For excitation of a band wave numbers near cutoff growth, behavior is dominated by mode with largest rate, not initial amplitude. This type likely to be important future assessment effects on specific target designs inertial confinement fusion.

参考文章(19)
Stephen E. Bodner, Rayleigh-Taylor Instability and Laser-Pellet Fusion Physical Review Letters. ,vol. 33, pp. 761- 764 ,(1974) , 10.1103/PHYSREVLETT.33.761
J. D. Lindl, W. C. Mead, Two-dimensional simulation of fluid instability in laser-fusion pellets Physical Review Letters. ,vol. 34, pp. 1273- 1276 ,(1975) , 10.1103/PHYSREVLETT.34.1273
Wallace M. Manheimer, Denis G. Colombant, Slab model for Rayleigh–Taylor stabilization by vortex shedding, compressibility, thermal conduction, and ablation Physics of Fluids. ,vol. 27, pp. 983- 993 ,(1984) , 10.1063/1.864689
R. Betti, V. N. Goncharov, R. L. McCrory, P. Sorotokin, C. P. Verdon, Self‐consistent stability analysis of ablation fronts in inertial confinement fusion Physics of Plasmas. ,vol. 3, pp. 2122- 2128 ,(1996) , 10.1063/1.871664
V. N. Goncharov, R. Betti, R. L. McCrory, C. P. Verdon, Self‐consistent stability analysis of ablation fronts with small Froude numbers Physics of Plasmas. ,vol. 3, pp. 4665- 4676 ,(1996) , 10.1063/1.872078
M. M. Marinak, S. G. Glendinning, R. J. Wallace, B. A. Remington, K. S. Budil, S. W. Haan, R. E. Tipton, J. D. Kilkenny, Nonlinear Rayleigh-Taylor Evolution of a Three-Dimensional Multimode Perturbation Physical Review Letters. ,vol. 80, pp. 4426- 4429 ,(1998) , 10.1103/PHYSREVLETT.80.4426
A. R. Piriz, J. Sanz, L. F. Ibañez, Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited Physics of Plasmas. ,vol. 4, pp. 1117- 1126 ,(1997) , 10.1063/1.872200
A. R. Piriz, Hydrodynamic instability of ablation fronts in inertial confinement fusion Physics of Plasmas. ,vol. 8, pp. 997- 1002 ,(2001) , 10.1063/1.1344194
H. J. Kull, S. I. Anisimov, Ablative stabilization in the incompressible Rayleigh–Taylor instability Physics of Fluids. ,vol. 29, pp. 2067- 2075 ,(1986) , 10.1063/1.865593