The Homogeneous Finite-Difference Formulation of the P-SV-Wave Equation of Motion

作者: Raphael S. Slawinski , Edward S. Krebes

DOI: 10.1023/A:1021133606779

关键词:

摘要: Two different approaches to finite-difference modeling of the elastodynamic equations have been used: heterogeneous and homogeneous. In approach, boundary conditions at interfaces are treated implicitly; in homogeneous, they explicitly discretized. We present a homogeneous scheme for 2-D P-SV-wave case. This represents generalization earlier such schemes, being able model media with arbitrary non-uniformities, provided only that all aligned numerical grid. perform detailed comparison generalized analogous scheme, show two schemes be identical spatially constynt Poisson's ratio. For where ratio is varying, differ by terms first-order spatial step size. However, results produced shows resulting differences negligible wide range values contrast.

参考文章(13)
Keiiti Aki, Paul G. Richards, Quantitative seismology : theory and methods ,(1980)
Peter Moczo, Frantis˘ek Hron, Jir˘í Zahradník, Testing four elastic finite-difference schemes for behavior at discontinuities Bulletin of the Seismological Society of America. ,vol. 83, pp. 107- 129 ,(1993)
K. R. Kelly, R. W. Ward, Sven Treitel, R. M. Alford, SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH Geophysics. ,vol. 41, pp. 2- 27 ,(1976) , 10.1190/1.1440605
Raphael A. Slawinski, Edward S. Krebes, Finite‐difference modeling of SH‐wave propagation in nonwelded contact media Geophysics. ,vol. 67, pp. 1656- 1663 ,(2002) , 10.1190/1.1512753
Michael Schoenberg, Elastic wave behavior across linear slip interfaces Journal of the Acoustical Society of America. ,vol. 68, pp. 1516- 1521 ,(1980) , 10.1121/1.385077
John E. Vidale, Robert W. Clayton, A stable free-surface boundary condition for two-dimensional elastic finite-difference wave simulation Geophysics. ,vol. 51, pp. 2247- 2249 ,(1986) , 10.1190/1.1442078
Z. S. Alterman, D. Loewenthal, Seismic Waves in a Quarter and Three-Quarter Plane Geophysical Journal International. ,vol. 20, pp. 101- 126 ,(1970) , 10.1111/J.1365-246X.1970.TB06058.X
Richard T. Coates, Michael Schoenberg, Finite-difference modeling of faults and fractures Geophysics. ,vol. 60, pp. 1514- 1526 ,(1995) , 10.1190/1.1443884
F. C. Karal, Z. Alterman, Propagation of elastic waves in layered media by finite difference methods Bulletin of the Seismological Society of America. ,vol. 58, pp. 367- 398 ,(1968)