Target-site resistance mutations ( kdr and RDL ), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae

作者: N Platt , R M Kwiatkowska , H Irving , A Diabaté , R Dabire

DOI: 10.1038/HDY.2015.33

关键词:

摘要: The implementation of successful insecticide resistance management strategies for malaria control is currently hampered by poor understanding the fitness cost on mosquito populations, including their mating competiveness. To fill this knowledge gap, coupled and uncoupled Anopheles gambiae s.l. males (all M form (Anopheles coluzzii)) were collected from swarms in Burkina Faso. This multiple resistant population exhibited high 1014F kdrR allele frequencies (>60%) RDLR (>80%) contrast to Ace-1R (<6%). Kdr heterozygote more likely mate than homozygote (OR=2.36; P<0.001), suggesting a negative impact kdr An. coluzzii ability. Interestingly, also competitive susceptible (OR=3.26; P=0.006), advantage effect. Similarly, RDLR/RDLS homozygote-resistant (OR=2.58; P=0.007). Furthermore, an additive disadvantage was detected male homozygotes both kdr/RDL-resistant alleles. In contrast, no difference observed Ace-1 mutation. Comparative microarray-based genome-wide transcription analysis revealed that metabolic did not significantly alter competitiveness mosquitoes. Indeed, significant expression levels main genes, has limited addition, specific gene classes/GO terms associated with process sensory perception peroxidase activity. detrimental competiveness here suggests such as rotation could help reverse resistance, if implemented early.

参考文章(33)
K.R. Dabiré, Abdoulaye Diabaté, Thierry Baldet, F. Agostinho, F. Alves, L. Manga, Ousmane Faye, Distribution of the members of Anopheles gambiae and pyrethroid knock-down resistance gene (kdr) in Guinea-Bissau, West Africa. Bulletin De La Societe De Pathologie Exotique. ,vol. 101, pp. 119- 123 ,(2008)
J. D. CHARLWOOD, M. D. R. JONES, Mating in the mosquito, Anopheles gambiae s.l. II. Swarming behaviour. Physiological Entomology. ,vol. 5, pp. 315- 320 ,(1980) , 10.1111/J.1365-3032.1980.TB00241.X
L. McCarroll, M. G. Paton, S. H. P. P. Karunaratne, H. T. R. Jayasuryia, K. S. P. Kalpage, J. Hemingway, Insecticides and mosquito-borne disease. Nature. ,vol. 407, pp. 961- 962 ,(2000) , 10.1038/35039671
Maureen Coetzee, M.T. Gillies, A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region).. ,(1987)
D. W. Rogers, M. M. A. Whitten, J. Thailayil, J. Soichot, E. A. Levashina, F. Catteruccia, Molecular and cellular components of the mating machinery in Anopheles gambiae females Proceedings of the National Academy of Sciences of the United States of America. ,vol. 105, pp. 19390- 19395 ,(2008) , 10.1073/PNAS.0809723105
Stefan Götz, Juan Miguel García-Gómez, Javier Terol, Tim D Williams, Shivashankar H Nagaraj, María José Nueda, Montserrat Robles, Manuel Talón, Joaquín Dopazo, Ana Conesa, None, High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research. ,vol. 36, pp. 3420- 3435 ,(2008) , 10.1093/NAR/GKN176
PS Sawadogo, Moussa Namountougou, KH Toé, J Rouamba, H Maïga, KR Ouédraogo, Thierry Baldet, Louis Clément Gouagna, Pierre Kengne, Frédéric Simard, Carlo Costantini, Gabriella Gibson, Abdoulaye Diabaté, Rosemary S Lees, Jeremie RL Gilles, Kounbobr Roch Dabiré, None, Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa) Acta Tropica. ,vol. 132, ,(2014) , 10.1016/J.ACTATROPICA.2013.12.011